Parasite Load (parasite + load)

Distribution by Scientific Domains
Distribution within Life Sciences

Kinds of Parasite Load

  • high parasite load


  • Selected Abstracts


    Ectoparasite load is linked to ontogeny and cell-mediated immunity in an avian host system with pronounced hatching asynchrony

    BIOLOGICAL JOURNAL OF THE LINNEAN SOCIETY, Issue 3 2008
    RADOVAN VÁCLAV
    Several contrasting hypotheses have been proposed to account for host age-biased parasite distribution, with some of them suggesting a key role of ectoparasites in the evolution and maintenance of weight hierarchies within broods. We examined parasite distribution among individual hosts across the whole period of host exposure to the parasite in a host system that shows distinct within-brood differences in age and age-related mortality. By contrast to previous hypotheses, we found that the abundance of a haematophagous, mobile ectoparasite Carnus haemapterus on nestling European rollers (Coracias garrulus) was highest approximately during the mid-nestling stage of their host, coinciding with the inflection point of the host growth phase. Parasite load increased neither with absolute resource availability (i.e. body size), nor body condition index. By contrast to previous evidence, higher parasite load under natural conditions was associated with a stronger cell-mediated immune response. However, this association was moderated by low parasite densities, as well as a better brood body condition index. Overall, although we revealed remarkable host ontogenetic effects on parasite distribution, the present study suggests that a highly mobile ectoparasite generally prefers healthier hosts. We propose that, in host systems with a marked asynchrony of hatching and background mortality within the brood, parasites favour persistence rather than nutritional attractiveness of the host. © 2008 The Linnean Society of London, Biological Journal of the Linnean Society, 2008, 94, 463,473. [source]


    Parasite loads are higher in the tropics: temperate to tropical variation in a single host-parasite system

    ECOGRAPHY, Issue 4 2008
    Daniel J. Salkeld
    Parasites are important selective forces upon the evolutionary ecology of their hosts. At least one hypothesis suggests that high species diversity in the tropics is associated with higher parasite abundance in tropical climates. Few studies, however, have directly assessed whether parasite abundance is higher in the tropics. To address this question, it is ideal, although seldom achievable, to compare parasite abundance in a single species that occurs over a geographical area including both temperate and tropical regions. We examined variation in blood parasite abundance in seven populations of a single lizard host species (Eulamprus quoyii) using a transect that spans temperate and tropical climates. Parasite prevalence (proportion of the host population infected) showed no geographical pattern. Interestingly though, parasite load was higher in lizard populations in the tropics, and was related to mean annual temperature, but not to rainfall. We speculate that in this system the relationship between latitude and parasite load is most likely due to variation in host life history over their geographic range. [source]


    Parasitized Salamanders are Inferior Competitors for Territories and Food Resources

    ETHOLOGY, Issue 4 2000
    Daria S. Maksimowich
    Parasites have been shown to impair the behaviour of their hosts, compromising the host's ability to exploit and compete for resources. We conducted two experiments to determine whether infestation with an ectoparasitic mite (Hannemania eltoni) was associated with changes in aggressive and foraging behaviour in the Ozark zigzag salamander, Plethodon angusticlavius. In a first experiment, male salamanders with high parasite loads were less aggressive overall than males with low parasite loads during territorial disputes. In addition, males with high parasite loads were more aggressive toward opponents with high parasite loads (symmetric contests) than toward opponents with low parasite loads (asymmetric contests). In contrast, males with low parasite loads did not adjust their level of aggression according to the parasite load of the opponent. In a second experiment, foraging behaviour of females was tested in response to ,familiar' (Drosophila) prey and ,novel' (termite) prey. Latency to first capture was significantly longer for parasitized than non-parasitized females when tested with ,familiar' prey, but not for ,novel' prey. Our results suggest that parasite-mediated effects may have profound influences on individual fitness in nature. [source]


    BALANCING SELECTION, RANDOM GENETIC DRIFT, AND GENETIC VARIATION AT THE MAJOR HISTOCOMPATIBILITY COMPLEX IN TWO WILD POPULATIONS OF GUPPIES (POECILIA RETICULATA)

    EVOLUTION, Issue 12 2006
    Cock van Oosterhout
    Abstract Our understanding of the evolution of genes of the major histocompatibility complex (MHC) is rapidly increasing, but there are still enigmatic questions remaining, particularly regarding the maintenance of high levels of MHC polymorphisms in small, isolated populations. Here, we analyze the genetic variation at eight microsatellite loci and sequence variation at exon 2 of the MHC class IIB (DAB) genes in two wild populations of the Trinidadian guppy, Poecilia reticulata. We compare the genetic variation of a small (Ne, 100) and relatively isolated upland population to that of its much larger (Ne, 2400) downstream counterpart. As predicted, microsatellite diversity in the upland population is significantly lower and highly differentiated from the population further downstream. Surprisingly, however, these guppy populations are not differentiated by MHC genetic variation and show very similar levels of allelic richness. Computer simulations indicate that the observed level of genetic variation can be maintained with overdominant selection acting at three DAB loci. The selection coefficients differ dramatically between the upland (s 0.2) and lowland (s, 0.01) populations. Parasitological analysis on wild-caught fish shows that parasite load is significantly higher on upland than on lowland fish, which suggests that large differences in selection intensity may indeed exist between populations. Based on the infection intensity, a substantial proportion of the upland fish would have suffered direct or indirect fitness consequences as a result of their high parasite loads. Selection by parasites plays a particularly important role in the evolution of guppies in the upland habitat, which has resulted in high levels of MHC diversity being maintained in this population despite considerable genetic drift. [source]


    Factors affecting the survival of founding individuals in translocated New Zealand Saddlebacks Philesturnus carunculatus

    IBIS, Issue 4 2007
    SABRINA S. TAYLOR
    Successful founders of new populations may represent a non-random sample of potential founding individuals. Using a recent Saddleback Philesturnus carunculatus translocation as a natural experiment, we related morphology, parasite load and genetic variation of translocated individuals to subsequent survivorship to assess the traits of successful founders. We also included capture location and holding time in our models to account for variables particular to translocations. Generalized linear model results suggest that, in addition to capture location, poor body condition (males) and the presence of ectoparasites (females) significantly reduced survivorship. Despite recent claims in the literature, we found no evidence that genetic variation was associated with survivorship or parasite load. [source]


    Do male hoots betray parasite loads in Tawny Owls?

    JOURNAL OF AVIAN BIOLOGY, Issue 4 2000
    Stephen M. Redpath
    Bird song structure may honestly reveal the health and vigour of individual males to potential mates and competitors. If this is the case then song may reflect the level of parasitic infections in males. We initially examined the relationship between blood parasite infections and the time taken to respond by 22 male Tawny Owls to a broadcast hoot. We then examined the call structure (total length and frequency) in relation to parasite infection, an index of owl condition and an index of food abundance. Owls with higher parasite loads responded more slowly to an intruder, although this relationship was not significant once condition and vole abundance were controlled for. We found no relationship between call length and any of the measured variables. However, the high frequency and the range of frequencies used in calls decreased with increasing parasite load. Thus, there was the potential for individuals to assess male parasite load from the speed of response and the structure of the call. Experimental tests of these relationships are now required. [source]


    Erythrocytapheresis for Plasmodium falciparum infection complicated by cerebral malaria and hyperparasitemia

    JOURNAL OF CLINICAL APHERESIS, Issue 1 2001
    Y. Zhang
    Abstract In malaria due to Plasmodium falciparum, life-threatening complications are in part related to the degree of parasitemia. Whole blood exchange and red blood cell exchange (RCE) have been used for the rapid removal of parasites from the circulation of patients with a high parasite load complicated by cerebral, pulmonary, and renal dysfunction. We have treated three 5,45-year-old patients with hyperparasitemia and end-organ dysfunction with red cell exchange by automated apheresis as an adjunct to specific anti-malarial chemotherapy. Parasitemia dropped more than 80% in all three patients immediately after the exchange, and all patients had an uneventful and full recovery. In combination with effective anti-malarial chemotherapy, apheresis RCE is a safe and rapid approach to treat complicated malaria due to P. falciparum. J. Clin. Apheresis. 16:15-18, 2001. © 2001 Wiley-Liss, Inc. [source]


    Effects of temperature on disease progression and swimming stamina in Ichthyophonus -infected rainbow trout, Oncorhynchus mykiss (Walbaum)

    JOURNAL OF FISH DISEASES, Issue 10 2009
    R Kocan
    Abstract Rainbow trout, Oncorhynchus mykiss, were infected with Ichthyophonus sp. and held at 10 °C, 15 °C and 20 °C for 28 days to monitor mortality and disease progression. Infected fish demonstrated more rapid onset of disease, higher parasite load, more severe host tissue reaction and reduced mean-day-to-death at higher temperature. In a second experiment, Ichthyophonus -infected fish were reared at 15 °C for 16 weeks then subjected to forced swimming at 10 °C, 15 °C and 20 °C. Stamina improved significantly with increased temperature in uninfected fish; however, this was not observed for infected fish. The difference in performance between infected and uninfected fish became significant at 15 °C (P = 0.02) and highly significant at 20 °C (P = 0.005). These results have implications for changes in the ecology of fish diseases in the face of global warming and demonstrate the effects of higher temperature on the progression and severity of ichthyophoniasis as well as on swimming stamina, a critical fitness trait of salmonids. This study helps explain field observations showing the recent emergence of clinical ichthyophoniasis in Yukon River Chinook salmon later in their spawning migration when water temperatures were high, as well as the apparent failure of a substantial percentage of infected fish to successfully reach their natal spawning areas. [source]


    Male body size predicts sperm number in the mandarinfish

    JOURNAL OF ZOOLOGY, Issue 3 2010
    M. B. Rasotto
    Abstract Theory predicts that, in species with non-resource-based mating systems, female preference for male sexual traits might be selected to ensure higher levels of fertility. Accordingly, secondary sexual traits used by females to assess males are expected to covary with ejaculate size and/or quality transferred during copulation, and female fecundity should be directly linked to mating with more attractive males. To date, direct tests of this hypothesis have been performed on internal fertilizing species, where several factors, such as for instance sperm competition, cryptic female choice, male parasite load, may affect ejaculate characteristics and female fecundity. Here, we used as a model the mandarinfish Synchiropus splendidus a small pelagic spawner where males only provide females with ejaculates and sperm competition does not occur. Males are significantly larger than females and we experimentally demonstrated that females prefer larger males. In addition, by collecting gametes from 67 natural spawning events, we attained a measure of the number of eggs and sperm released in each spawning event and the fertilization rates. The mean number of gametes produced positively correlates with body size in both sexes. Males do not regulate sperm number according to egg number and/or female body size. Fertilization success is significantly related to the mean number of sperm released but not directly to male body size. These findings, despite not fully accomplishing theoretical expectation, suggest that larger and more fecund females may suffer sperm limitation in mating with smaller males. In addition, our results have possible implications for the aquarium fishery of this species, which targets large males. [source]


    Genetic variability is unrelated to growth and parasite infestation in natural populations of the European eel (Anguilla anguilla)

    MOLECULAR ECOLOGY, Issue 22 2009
    J. M. PUJOLAR
    Abstract Positive correlations between individual genetic heterozygosity and fitness-related traits (HFCs) have been observed in organisms as diverse as plants, marine bivalves, fish or mammals. HFCs are not universal and the strength and stability of HFCs seem to be variable across species, populations and ages. We analysed the relationship between individual genetic variability and two different estimators of fitness in natural samples of European eel, growth rate (using back-calculated length-at-age 1, 2 and 3) and parasite infestation by the swimbladder nematode Anguillicola crassus. Despite using a large data set of 22 expressed sequence tags-derived microsatellite loci and a large sample size of 346 individuals, no heterozygote advantage was observed in terms of growth rate or parasite load. The lack of association was evidenced by (i) nonsignificant global HFCs, (ii) a Multivariate General Linear Model showing no effect of heterozygosity on fitness components, (iii) single-locus analysis showing a lower number of significant tests than the expected false discovery rate, (iv) sign tests showing only a significant departure from expectations at one component, and, (v) a random distribution of significant single-locus HFCs that was not consistent across fitness components or sampling sites. This contrasts with the positive association observed in farmed eels in a previous study using allozymes, which can be explained by the nature of the markers used, with the allozyme study including many loci involved in metabolic energy pathways, while the expressed sequence tags-linked microsatellites might be located in genes or in the proximity of genes uncoupled with metabolism/growth. [source]


    Genetic variation in MHC class II expression and interactions with MHC sequence polymorphism in three-spined sticklebacks

    MOLECULAR ECOLOGY, Issue 4 2006
    K. M. WEGNER
    Abstract Genes of the major histocompatibility complex (MHC) have been studied for several decades because of their pronounced allelic polymorphism. Structural allelic polymorphism is, however, not the only source of variability subjected to natural selection. Genetic variation may also exist in gene expression patterns. Here, we show that in a natural population of three-spined sticklebacks (Gasterosteus aculeatus) the expression of MHC class IIB genes was positively correlated with parasite load, which indicates increased immune activation of the MHC when infections are frequent. To experimentally study MHC expression, we used laboratory-bred sticklebacks that were exposed to three naturally occurring species of parasite. We found strong differences in MHC class IIB expression patterns among fish families, which were consistent over two generations, thus demonstrating a genetic component. The average number of MHC class IIB sequence variants within families was negatively correlated to the MHC expression level suggesting compensatory up-regulation in fish with a low (i.e. suboptimal) MHC sequence variability. The observed differences among families and the negative correlation with individual sequence diversity imply that MHC expression is evolutionary relevant for the onset and control of the immune response in natural populations. [source]


    Sexual selection for male dominance reduces opportunities for female mate choice in the European bitterling (Rhodeus sericeus)

    MOLECULAR ECOLOGY, Issue 5 2005
    M. REICHARD
    Abstract Sexual selection involves two main mechanisms: intrasexual competition for mates and intersexual mate choice. We experimentally separated intrasexual (male,male interference competition) and intersexual (female choice) components of sexual selection in a freshwater fish, the European bitterling (Rhodeus sericeus). We compared the roles of multiple morphological and behavioural traits in male success in both components of sexual competition, and their relation to male reproductive success, measured as paternity of offspring. Body size was important for both female choice and male,male competition, though females also preferred males that courted more vigorously. However, dominant males often monopolized females regardless of female preference. Subordinate males were not excluded from reproduction and sired some offspring, possibly through sneaked ejaculations. Male dominance and a greater intensity of carotenoid-based red colouration in their iris were the best predictors of male reproductive success. The extent of red iris colouration and parasite load did not have significant effects on female choice, male dominance or male reproductive success. No effect of parasite load on the expression of red eye colouration was detected, though this may have been due to low parasite prevalence in males overall. In conclusion, we showed that even though larger body size was favoured in both intersexual and intrasexual selection, male,male interference competition reduced opportunities for female choice. Females, despite being choosy, had limited control over the paternity of their offspring. Our study highlights the need for reliable measures of male reproductive success in studies of sexual selection. [source]


    Parasites boosts biodiversity and changes animal community structure by trait-mediated indirect effects

    OIKOS, Issue 2 2005
    Kim N. Mouritsen
    Parasitism has long been emphasised as an important process structuring animal communities. However, empirical evidence documenting the impact of parasites in other than simple laboratory settings is lacking. Here we examine the trait-mediated indirect effects of echinostome trematodes on a New Zealand soft bottom intertidal community of macroinvertebrates. Curtuteria australis and a second related but undescribed trematode both utilise the cockle Austrovenus stutchburyi as second intermediate host in which the parasites infect the foot tissue. Heavily infected cockles are therefore more sessile than lightly infected individuals, and, unable to bury, often rest on the sediment surface. We utilised these behavioural changes in two long term field experiments, respectively manipulating the parasite load of buried cockle (i.e. bioturbation), and the density of surfaced cockles (i.e. surface structures and seabed hydrodynamics). Both high parasite loads in buried cockles and the presence of surfaced cockles increased species richness and generally also the density of certain species and of major systematic and functional groups of benthic macroinvertebrates. Species diversity (alpha) peaked under intermediate densities of surfaced cockles. Our results demonstrate that parasites, solely through their impact on the behaviour of a single community member, can be significant determinants of animal community structure and function. [source]


    Cellular responses and cytokine profiles in Ascaris lumbricoides and Trichuris trichiura infected patients

    PARASITE IMMUNOLOGY, Issue 11-12 2002
    Stefan M. Geiger
    SUMMARY The impact of intestinal helminth infection, i.e. Ascaris lumbricoides and Trichuris trichiura, on cellular responsiveness and cytokine production was investigated in young adults. Ascaris -specific cellular responsiveness was higher in parasite-free endemic controls than in patients infected with T. trichiura, or A. lumbricoides, or patients co-infected with both parasites. Also, mitogen-induced tumour necrosis factor (TNF)-,, interleukin (IL)-12 and interferon (IFN)-, secretion by peripheral blood mononuclear cells (PBMC) was higher in negative endemic controls than in infected individuals. Ascaris antigen-specific production of TNF-,, IL-12 and IFN-, was low in singly Ascaris as well as in co-infected patients, whereas secretion of IL-10 and IL-13 was elevated and similarly high in all patient groups. The detection of Trichuris -specific and Ascaris -specific IgG4 revealed significantly higher serum antibody levels in Trichuris or Ascaris patients when compared to endemic controls (P < 0·05), whereas parasite-specific IgE antibody levels were similarly high in infected individuals and in endemic controls. In summary, chronically infected Ascaris and Trichuris patients with a high parasite load presented reduced cellular reactivity and lower type 1 TNF-,, IFN-, and IL-12 responses when compared with endemic controls, whereas type 2 IL-10 and IL-13 productions were similar in all groups from the endemic area. The former may support parasite persistence, whereas substantial type 2 cytokine release may promote protective immunity, suggesting an adaptation of the host to control the parasite burden while minimizing immune-mediated host self-damage. [source]


    Ectoparasite load is linked to ontogeny and cell-mediated immunity in an avian host system with pronounced hatching asynchrony

    BIOLOGICAL JOURNAL OF THE LINNEAN SOCIETY, Issue 3 2008
    RADOVAN VÁCLAV
    Several contrasting hypotheses have been proposed to account for host age-biased parasite distribution, with some of them suggesting a key role of ectoparasites in the evolution and maintenance of weight hierarchies within broods. We examined parasite distribution among individual hosts across the whole period of host exposure to the parasite in a host system that shows distinct within-brood differences in age and age-related mortality. By contrast to previous hypotheses, we found that the abundance of a haematophagous, mobile ectoparasite Carnus haemapterus on nestling European rollers (Coracias garrulus) was highest approximately during the mid-nestling stage of their host, coinciding with the inflection point of the host growth phase. Parasite load increased neither with absolute resource availability (i.e. body size), nor body condition index. By contrast to previous evidence, higher parasite load under natural conditions was associated with a stronger cell-mediated immune response. However, this association was moderated by low parasite densities, as well as a better brood body condition index. Overall, although we revealed remarkable host ontogenetic effects on parasite distribution, the present study suggests that a highly mobile ectoparasite generally prefers healthier hosts. We propose that, in host systems with a marked asynchrony of hatching and background mortality within the brood, parasites favour persistence rather than nutritional attractiveness of the host. © 2008 The Linnean Society of London, Biological Journal of the Linnean Society, 2008, 94, 463,473. [source]


    Crowding and disease: effects of host density on response to infection in a butterfly,parasite interaction

    ECOLOGICAL ENTOMOLOGY, Issue 5 2009
    ELIZABETH LINDSEY
    Abstract. 1. Hosts experiencing frequent variation in density are thought to benefit from allocating more resources to parasite defence when density is high (,density-dependent prophylaxis'). However, high density conditions can increase intra-specific competition and induce physiological stress, hence increasing host susceptibility to infection (,crowding-stress hypothesis'). 2. We studied monarch butterflies (Danaus plexippus) and quantified the effects of larval rearing density on susceptibility to the protozoan parasite Ophryocystis elektroscirrha. Larvae were inoculated with parasite spores and reared at three density treatments: low, moderate, and high. We examined the effects of larval density on parasite loads, host survival, development rates, body size, and wing melanism. 3. Results showed an increase in infection probability with greater larval density. Monarchs in the moderate and high density treatments also suffered the greatest negative effects of parasite infection on body size, development rate, and adult longevity. 4. We observed greater body sizes and shorter development times for monarchs reared at moderate densities, and this was true for both unparasitised and parasite-treated monarchs. We hypothesise that this effect could result from greater larval feeding rates at moderate densities, combined with greater physiological stress at the highest densities. 5. Although monarch larvae are assumed to occur at very low densities in the wild, an analysis of continent-wide monarch larval abundance data showed that larval densities can reach high levels in year-round resident populations and during the late phase of the breeding season. Treatment levels used in our experiment captured ecologically-relevant variation in larval density observed in the wild. [source]


    Associations between host migration and the prevalence of a protozoan parasite in natural populations of adult monarch butterflies

    ECOLOGICAL ENTOMOLOGY, Issue 2 2000
    Sonia M. Altizer
    Summary 1. Monarch butterflies Danaus plexippus (L.) (Lepidoptera: Nymphalidae) are susceptible to infection by the obligate protozoan parasite Ophryocystis elektroscirrha (McLaughlin and Myers) (Apicomplexa: Neogregarinida). Because monarchs form resident and migratory populations in different parts of the world, this host,parasite system provides the opportunity to examine how variation in parasite prevalence relates to host movement patterns. 2. Parasite prevalence was evaluated using 14 790 adult monarchs captured between 1968 and 1997. Comparison of three populations in North America indicated that parasite prevalence is associated negatively with host dispersal distances. A continuously breeding, nonmigratory population in southern Florida showed high prevalence (over 70% heavily infected). The western population migrates moderate distances to overwintering sites on the Pacific Coast and has intermediate prevalence (30% heavily infected). The eastern migratory population, which travels the longest distance to Mexican overwintering sites, has exhibited less than 8% infection throughout the past 30 years. 3. Variation in parasite loads within North American migratory populations was investigated to determine whether the prevalence of heavy infection and average parasite loads declined during migration or overwintering. Average parasite loads of summer-breeding adults in western North America decreased with increasing distance from overwintering sites. This suggests that heavily infected monarchs are less likely to remigrate long distances in spring. No differences in the frequency of heavily infected adults were found among eastern or western North American monarchs throughout the overwintering period, however, suggesting that this parasite does not affect overwintering mortality. 4. Changes in the prevalence of monarchs with low parasite loads demonstrate that spore transfer occurs during migration and overwintering, possibly when adult butterflies contact each other as a result of their clustering behaviour. 5. This study of geographical and temporal variation in O. elektroscirrha among populations of D. plexippus demonstrates the potential role of seasonal migration in mediating interactions between hosts and parasites, and suggests several mechanisms through which migratory behaviour may influence parasite prevalence. [source]


    Parasitized Salamanders are Inferior Competitors for Territories and Food Resources

    ETHOLOGY, Issue 4 2000
    Daria S. Maksimowich
    Parasites have been shown to impair the behaviour of their hosts, compromising the host's ability to exploit and compete for resources. We conducted two experiments to determine whether infestation with an ectoparasitic mite (Hannemania eltoni) was associated with changes in aggressive and foraging behaviour in the Ozark zigzag salamander, Plethodon angusticlavius. In a first experiment, male salamanders with high parasite loads were less aggressive overall than males with low parasite loads during territorial disputes. In addition, males with high parasite loads were more aggressive toward opponents with high parasite loads (symmetric contests) than toward opponents with low parasite loads (asymmetric contests). In contrast, males with low parasite loads did not adjust their level of aggression according to the parasite load of the opponent. In a second experiment, foraging behaviour of females was tested in response to ,familiar' (Drosophila) prey and ,novel' (termite) prey. Latency to first capture was significantly longer for parasitized than non-parasitized females when tested with ,familiar' prey, but not for ,novel' prey. Our results suggest that parasite-mediated effects may have profound influences on individual fitness in nature. [source]


    BALANCING SELECTION, RANDOM GENETIC DRIFT, AND GENETIC VARIATION AT THE MAJOR HISTOCOMPATIBILITY COMPLEX IN TWO WILD POPULATIONS OF GUPPIES (POECILIA RETICULATA)

    EVOLUTION, Issue 12 2006
    Cock van Oosterhout
    Abstract Our understanding of the evolution of genes of the major histocompatibility complex (MHC) is rapidly increasing, but there are still enigmatic questions remaining, particularly regarding the maintenance of high levels of MHC polymorphisms in small, isolated populations. Here, we analyze the genetic variation at eight microsatellite loci and sequence variation at exon 2 of the MHC class IIB (DAB) genes in two wild populations of the Trinidadian guppy, Poecilia reticulata. We compare the genetic variation of a small (Ne, 100) and relatively isolated upland population to that of its much larger (Ne, 2400) downstream counterpart. As predicted, microsatellite diversity in the upland population is significantly lower and highly differentiated from the population further downstream. Surprisingly, however, these guppy populations are not differentiated by MHC genetic variation and show very similar levels of allelic richness. Computer simulations indicate that the observed level of genetic variation can be maintained with overdominant selection acting at three DAB loci. The selection coefficients differ dramatically between the upland (s 0.2) and lowland (s, 0.01) populations. Parasitological analysis on wild-caught fish shows that parasite load is significantly higher on upland than on lowland fish, which suggests that large differences in selection intensity may indeed exist between populations. Based on the infection intensity, a substantial proportion of the upland fish would have suffered direct or indirect fitness consequences as a result of their high parasite loads. Selection by parasites plays a particularly important role in the evolution of guppies in the upland habitat, which has resulted in high levels of MHC diversity being maintained in this population despite considerable genetic drift. [source]


    Do male hoots betray parasite loads in Tawny Owls?

    JOURNAL OF AVIAN BIOLOGY, Issue 4 2000
    Stephen M. Redpath
    Bird song structure may honestly reveal the health and vigour of individual males to potential mates and competitors. If this is the case then song may reflect the level of parasitic infections in males. We initially examined the relationship between blood parasite infections and the time taken to respond by 22 male Tawny Owls to a broadcast hoot. We then examined the call structure (total length and frequency) in relation to parasite infection, an index of owl condition and an index of food abundance. Owls with higher parasite loads responded more slowly to an intruder, although this relationship was not significant once condition and vole abundance were controlled for. We found no relationship between call length and any of the measured variables. However, the high frequency and the range of frequencies used in calls decreased with increasing parasite load. Thus, there was the potential for individuals to assess male parasite load from the speed of response and the structure of the call. Experimental tests of these relationships are now required. [source]


    Parasites boosts biodiversity and changes animal community structure by trait-mediated indirect effects

    OIKOS, Issue 2 2005
    Kim N. Mouritsen
    Parasitism has long been emphasised as an important process structuring animal communities. However, empirical evidence documenting the impact of parasites in other than simple laboratory settings is lacking. Here we examine the trait-mediated indirect effects of echinostome trematodes on a New Zealand soft bottom intertidal community of macroinvertebrates. Curtuteria australis and a second related but undescribed trematode both utilise the cockle Austrovenus stutchburyi as second intermediate host in which the parasites infect the foot tissue. Heavily infected cockles are therefore more sessile than lightly infected individuals, and, unable to bury, often rest on the sediment surface. We utilised these behavioural changes in two long term field experiments, respectively manipulating the parasite load of buried cockle (i.e. bioturbation), and the density of surfaced cockles (i.e. surface structures and seabed hydrodynamics). Both high parasite loads in buried cockles and the presence of surfaced cockles increased species richness and generally also the density of certain species and of major systematic and functional groups of benthic macroinvertebrates. Species diversity (alpha) peaked under intermediate densities of surfaced cockles. Our results demonstrate that parasites, solely through their impact on the behaviour of a single community member, can be significant determinants of animal community structure and function. [source]


    Chronic antigen ingestion protects ovalbumin sensitized mice from severe manifestation of Leishmania major infection

    PARASITE IMMUNOLOGY, Issue 11-12 2008
    J. C. S. SALDANHA
    SUMMARY In the present work, the development of experimental leishmaniasis was examined in sensitized BALB/c mice that were chronically fed with antigen. After an oral challenge with egg white solution, the ovalbumin (Ova)-sensitized mice showed an increase in serum anti-Ova IgE and IgG1 antibodies. Lesions induced by Leishmania major infection were reduced by the ingestion of Ova in sensitized mice, as assessed by reduced footpad growth, lower parasite loads and improved pathological outcome compared to sham sensitized mice. Moreover, such findings were connected to a shift to a Th1 response involving higher IFN-, production and serum levels of IgG2a anti- Leishmania antigens. The data appear to corroborate the suggestion that chronic ingestion of an antigen by sensitized mice modulates the immunological system through a shift in cytokine release, exhibiting a healing response and resistance to L. major infection. [source]


    Effects of habitat fragmentation and disturbance on howler monkeys: a review

    AMERICAN JOURNAL OF PRIMATOLOGY, Issue 1 2010
    Víctor Arroyo-Rodríguez
    Abstract We examined the literature on the effects of habitat fragmentation and disturbance on howler monkeys (genus Alouatta) to (1) identify different threats that may affect howlers in fragmented landscapes; (2) review specific predictions developed in fragmentation theory and (3) identify the empirical evidence supporting these predictions. Although howlers are known for their ability to persist in both conserved and disturbed conditions, we found evidence that they are negatively affected by high levels of habitat loss, fragmentation and degradation. Patch size appears to be the main factor constraining populations in fragmented habitats, probably because patch size is positively related to food availability, and negatively related to anthropogenic pressures, physiological stress and parasite loads. Patch isolation is not a strong predictor of either patch occupancy or population size in howlers, a result that may be related to the ability of howlers to move among forest patches. Thus, we propose that it is probable that habitat loss has larger consistent negative effects on howler populations than habitat fragmentation per se. In general, food availability decreases with patch size, not only due to habitat loss, but also because the density of big trees, plant species richness and howlers' home range size are lower in smaller patches, where howlers' population densities are commonly higher. However, it is unclear which vegetation attributes have the biggest influence on howler populations. Similarly, our knowledge is still limited concerning the effects of postfragmentation threats (e.g. hunting and logging) on howlers living in forest patches, and how several endogenous threats (e.g. genetic diversity, physiological stress, and parasitism) affect the distribution, population structure and persistence of howlers. More long-term studies with comparable methods are necessary to quantify some of the patterns discussed in this review, and determine through meta-analyses whether there are significant inter-specific differences in species' responses to habitat loss and fragmentation. Am. J. Primatol. 72:1,16, 2010. © 2009 Wiley-Liss, Inc. [source]


    Decreased immunocompetence in a severely bottlenecked population of an endemic New Zealand bird

    ANIMAL CONSERVATION, Issue 1 2007
    K. A. Hale
    Abstract Inbreeding resulting from severe population bottlenecks may impair an individual's immune system and render it more susceptible to disease. Although a reduced immune response could threaten the survival of highly endangered species, few studies have assessed the effect of population bottlenecks on immunocompetence. We compared the counts of leucocytes and external, blood and gastrointestinal parasite loads in two populations of the endemic New Zealand robin Petroica australis to assess the immunocompetence of birds in a severely bottlenecked population relative to its more genetically diverse source population. Despite similar parasite loads in both populations, robins in the severely bottlenecked population showed lower counts of both total leucocyte and total lymphocyte numbers. When the immune system was experimentally challenged using the phytohaemagglutinin skin test, robins in the severely bottlenecked population exhibited a significantly lower immune response than the source population, suggesting that birds passing through a severe bottleneck have a compromised immunocompetence. Our results confirm that severe bottlenecks reduce the immune response of birds and highlight the need to avoid severe bottlenecks in the recovery programmes of endangered species. [source]