Home About us Contact | |||
Parasite Growth (parasite + growth)
Selected AbstractsNotch1 expression on T,cells is not required for CD4+ T,helper differentiationEUROPEAN JOURNAL OF IMMUNOLOGY, Issue 6 2004Fabienne Tacchini-Cottier Abstract Notch1 proteins are involved in binary cell fate decisions. To determine the role of Notch1 in the differentiation of CD4+ Th1 versus Th2 cells, we have compared T,helper polarization in vitro in naive CD4+ T,cells isolated from mice in which the N1 gene is specifically inactivated in all mature T,cells. Following activation, Notch1-deficient CD4+ T,cells transcribed and secreted IFN-, under Th1 conditions and IL-4 under Th2 conditions at levels similar to that of control CD4+ T,cells. These results show that Notch1 is dispensable for the development of Th1 and Th2 phenotypes in vitro. The requirement for Notch1 in Th1 differentiation in vivo was analyzed following inoculation of Leishmania major in mice with a T,cell-specific inactivation of the Notch1 gene. Following infection, these mice controlled parasite growth at the site of infection and healed their lesions. The mice developed a protective Th1 immune response characterized by high levels of IFN-, mRNA and protein and low levels of IL-4 mRNA with no IL-4 protein in their lymph node cells. Taken together, these results indicate that Notch1 is not critically involved in CD4+ T,helper,1 differentiation and in resolution of lesions following infection with L.,major. [source] Structured treatment interruption in patients with alveolar echinococcosisHEPATOLOGY, Issue 2 2004Stefan Reuter In human alveolar echinococcosis (AE), benzimidazoles are given throughout life because they are only parasitostatic. It has been a longstanding goal to limit treatment, and recent reports suggest that, in selected cases, benzimidazoles may be parasitocidal. Previously, we showed that positron ,emission tomography (PET) using [18F]fluoro-deoxyglucose discriminates active from inactive lesions in AE. We have now performed a 3-year prospective study in 23 patients and conducted a structured treatment interruption in those without signs of PET activity. Disease progression was further assessed by ultrasound, computerized tomography, laboratory parameters, and clinical examination. We found PET-negative lesions in 15 of 23 patients and benzimidazoles were discontinued in these patients. After 18 months, patients were reevaluated, and, of the 15 initially PET-negative patients, 8 showed either new activity on PET (n = 6) or signs of clinical progression (n = 2). Reinitiation of benzimidazoles halted parasite growth again. No further progression was detected after 36 months. PET had a sensitivity of 91% for the detection of active lesions. In conclusion, despite successful suppression of metabolic activity, in most cases benzimidazoles do not kill the parasite. PET is a reliable tool for assessing metabolic activity and for timely detection of relapses. Neither duration of treatment, kind of treatment, lesion size, calcifications, or regressive changes reliably indicate parasite death. We discourage the discontinuation of benzimidazoles in inoperable AE even after many years of treatment. However, patients with a poor compliance of benzimidazole intake or patients suffering from side effects to benzimidazoles might be assessed for PET negativity. If permanent discontinuation of benzimidazoles is attempted, the course of disease should be followed by PET. (HEPATOLOGY 2004;39:509,517.) [source] Anti-plasmodial and anti-leishmanial activity of conformationally restricted pentamidine congenersJOURNAL OF PHARMACY AND PHARMACOLOGY: AN INTERNATI ONAL JOURNAL OF PHARMACEUTICAL SCIENCE, Issue 8 2006Tien L. Huang A library of 52 pentamidine congeners in which the flexible pentyldioxy linker in pentamidine was replaced with various restricted linkers was tested for in-vitro activity against two Plasmodium falciparum strains and Leishmania donovani. The tested compounds were generally more effective against P. falciparum than L. donovani. The most active compounds against the chloroquine-sensitive (D6, Sierra Leone) and -resistant (W2, Indochina) strains of P. falciparum were bisbenzamidines linked with a 1,4-piperazinediyl or 1, 4-homopiperazinediyl moiety, with IC50 values (50% inhibitory concentration, inhibiting parasite growth by 50% in relation to drug-free control) as low as 7 nM based on the parasite lactate dehydrogenase assay. Seven piperazine-linked bisbenzamidines substituted at the amidinium nitrogens with a linear alkyl group of 3,6 carbons (22, 25, 27, 31) or cycloalkyl group of 4, 6 or 7 carbons (26, 32, 34) were more potent (IC50 < 40 nM) than chloroquine or pentamidine as anti-plasmodial agents. The most active anti-leishmanial agents were 4,4,-[1,4-phenylenebis(methyleneoxy)]bisbenzenecarboximidamide (2, IC50 , 0.290 ,M) and 1,4-bis[4-(1H-benzimidazol-2-yl)phenyl] piperazine (44, IC50,0.410 ,M), which were 10- and 7-fold more potent than pentamidine (IC50 , 2.90 ,M). Several of the more active anti-plasmodial agents (e.g. 2,31, 33, 36,38) were also potent anti-leishmanial agents, indicating broad antiprotozoal properties. However, a number of analogues that showed potent anti-plasmodial activity (1, 18, 21, 22, 25,28, 32, 43, 45) were not significantly active against the Leishmania parasite. This indicates differential modes of anti-plasmodial and anti-leishmanial actions for this class of compounds. These compounds provide important structure-activity relationship data for the design of improved chemotherapeutic agents against parasitic infections. [source] Structure and reactivity of Trypanosoma brucei pteridine reductase: inhibition by the archetypal antifolate methotrexateMOLECULAR MICROBIOLOGY, Issue 6 2006Alice Dawson Summary The protozoan Trypanosoma brucei has a functional pteridine reductase (TbPTR1), an NADPH-dependent short-chain reductase that participates in the salvage of pterins, which are essential for parasite growth. PTR1 displays broad-spectrum activity with pterins and folates, provides a metabolic bypass for inhibition of the trypanosomatid dihydrofolate reductase and therefore compromises the use of antifolates for treatment of trypanosomiasis. Catalytic properties of recombinant TbPTR1 and inhibition by the archetypal antifolate methotrexate have been characterized and the crystal structure of the ternary complex with cofactor NADP+ and the inhibitor determined at 2.2 Å resolution. This enzyme shares 50% amino acid sequence identity with Leishmania major PTR1 (LmPTR1) and comparisons show that the architecture of the cofactor binding site, and the catalytic centre are highly conserved, as are most interactions with the inhibitor. However, specific amino acid differences, in particular the placement of Trp221 at the side of the active site, and adjustment of the ,6-,6 loop and ,6 helix at one side of the substrate-binding cleft significantly reduce the size of the substrate binding site of TbPTR1 and alter the chemical properties compared with LmPTR1. A reactive Cys168, within the active site cleft, in conjunction with the C-terminus carboxyl group and His267 of a partner subunit forms a triad similar to the catalytic component of cysteine proteases. TbPTR1 therefore offers novel structural features to exploit in the search for inhibitors of therapeutic value against African trypanosomiasis. [source] Double-stranded RNA-mediated gene silencing of cysteine proteases (falcipain-1 and -2) of Plasmodium falciparumMOLECULAR MICROBIOLOGY, Issue 5 2002Pawan Malhotra Summary Malaria remains a public health problem of enormous magnitude, affecting over 500 million people every year. Lack of success in the past in the development of new drug/vaccines has mainly been attributed to poor understanding of the functions of different parasite proteins. Recently, RNA interference (RNAi) has emerged as a simple and incisive technique to study gene functions in a variety of organisms. In this study, we report the results of RNAi by double-stranded RNA of cysteine protease genes (falcipain -1 and -2) in the malaria parasite, Plasmodium falciparum. Using RNAi directed towards falcipain genes, we demonstrate that blocking the expression of these genes results in severe morphological abnormalities in parasites, inhibition of parasite growth in vitro and substantial accumulation of haemoglobin in the parasite. The inhibitory effects produced by falcipain double-stranded (ds)RNAs are reminiscent of the effects observed upon administering E-64, a cysteine protease inhibitor. The parasites treated with falcipain's dsRNAs also show marked reduction in the levels of corresponding endogenous falcipain mRNAs. We also demonstrate that dsRNAs of falcipains are broken into short interference RNAs , 25 nucleotides in size, a characteristic of RNAi, which in turn activates sequence-specific nuclease activity in the malaria parasites. These results thus provide more evidence for the existence of RNAi in P. falciparum and also suggest possibilities for using RNAi as an effective tool to determine the functions of the genes identified from the P. falciparum genome sequencing project. [source] Contribution of C5-mediated mechanisms to host defence against Echinococcus granulosus hydatid infectionPARASITE IMMUNOLOGY, Issue 9 2000Ana María Ferreira The aim of this work was to investigate the contribution of complement C5-mediated mechanisms, with an emphasis on inflammation, to host defences against Echinococcus granulosus hydatid disease. Thus, we compared the systemic and local inflammatory responses induced by the parasite, and the outcome of infection, between congenic C5-sufficient (B10.D2 n/SnJ) and C5-deficient (B10.D2 o/SnJ) mice challenged with protoscoleces. Indirect evidence of in-vivo complement activation during the establishment phase was obtained; infection induced serum amyloid P and eosinophil responses which were dependent on C5. Early recruitment of polymorphonuclear cells was not dependent on the presence of C5. The higher capacity of C5-sufficient mice to recruit eosinophils was also observed during the cystic phase of infection, and mice recruiting more eosinophils developed lower parasite masses. Analysis of the outcome of infection after 8 months showed that C5-sufficient mice were more resistant to infection than C5-deficient mice in terms of individuals with no cysts; this trend was not statistically significant. In addition, C5-deficient mice developed higher numbers of large (> 5 mm in diameter) cysts and higher cyst weights than C5-sufficient mice indicating that C5-mediated mechanisms are detrimental for parasite growth. Taken together, our results suggest that complement, through C5-mediated effectors, contributes to host defences by both restricting the establishment of infection and controlling the growth of established cysts. This contribution may, at least partially, be associated with the ability of C5a to promote eosinophil infiltration. [source] Characterization of a Cryptosporidium parvum Gene Encoding a Protein with Homology to Long Chain Fatty Acid SynthetaseTHE JOURNAL OF EUKARYOTIC MICROBIOLOGY, Issue 2003Leonardo Camero ABSTRACT: We describe here the cloning, sequencing, and characterization of a novel Cryptosporidium parvum gene, encoding a protein with significant homology to the long-chain fatty acyl-CoA synthetase (LCFA, EC 6.2.13). The gene has an open reading frame of 2,301 bp, coding for a 766 amino acid polypeptide, and with an estimated MW of 86.1 kDa. By indirect immunofluorescence assay, monoclonal antibodies C3CE7 and ESD labeled the anterior pole of fixed C. parvum sporozoites and developmental stages in C. parvum-infected cultures at 24, 48, and 72 h post-infection. These monoclonal antibodies inhibited more than 3.5% of parasite growth in vitro. The effect of triacsin C, a potent selective inhibitor of LCFA synthetase, on parasite growth was assessed in cell culture; complete inhibition of parasite growth at 2.5 ug/inl was obtained with little evidence of drug-associated cytotoxicity. These results suggest that the fatty acyl-CoA synthetase may be a useful target in the development of selective inhibitors and immunologic interventions against C. parvum [source] Communication between Toxoplasma gondii and its host: impact on parasite growth, development, immune evasion, and virulenceAPMIS, Issue 5-6 2009IRA J. BLADER Toxoplasma gondii is an obligate intracellular protozoan parasite that can infect most warm-blooded animals and cause severe and life-threatening disease in developing fetuses and in immune-compromised patients. Although Toxoplasma was discovered over 100 years ago, we are only now beginning to appreciate the importance of the role that parasite modulation of its host has on parasite growth, bradyzoite development, immune evasion, and virulence. The goal of this review is to highlight these findings, to develop an integrated model for communication between Toxoplasma and its host, and to discuss new questions that arise out of these studies. [source] Host cell lipids control cholesteryl ester synthesis and storage in intracellular ToxoplasmaCELLULAR MICROBIOLOGY, Issue 6 2005Yoshifumi Nishikawa Summary The intracellular protozoan Toxoplasma gondii lacks a de novo mechanism for cholesterol synthesis and therefore must scavenge this essential lipid from the host environment. In this study, we demonstrated that T. gondii diverts cholesterol from low-density lipoproteins for cholesteryl ester synthesis and storage in lipid bodies. We identified and characterized two isoforms of acyl-CoA:cholesterol acyltransferase (ACAT)-related enzymes, designated TgACAT1, and TgACAT1, in T. gondii. Both proteins are coexpressed in the parasite, localized to the endoplasmic reticulum and participate in cholesteryl ester synthesis. In contrast to mammalian ACAT, TgACAT1, and TgACAT1, preferentially incorporate palmitate into cholesteryl esters and present a broad sterol substrate affinity. Mammalian ACAT-deficient cells transfected with either TgACAT1, or TgACAT1, are restored in their capability of cholesterol esterification. TgACAT1, produces steryl esters and forms lipid bodies after transformation in a Saccharomyces cerevisiae mutant strain lacking neutral lipids. In addition to their role as ACAT substrates, host fatty acids and low-density lipoproteins directly serve as Toxoplasma ACAT activators by stimulating cholesteryl ester synthesis and lipid droplet biogenesis. Free fatty acids significantly increase TgACAT1, mRNA levels. Selected cholesterol esterification inhibitors impair parasite growth by rapid disruption of plasma membrane. Altogether, these studies indicate that host lipids govern neutral lipid synthesis in Toxoplasma and that interference with mechanisms of host lipid storage is detrimental to parasite survival in mammalian cells. [source] |