Home About us Contact | |||
Pancreatic Islet Cells (pancreatic + islet_cell)
Selected AbstractsOrgan Procurement Organization Compliance with 21 CFR 1271: A Challenge for Allogeneic Pancreatic Islet Cell Transplantation ProgramsAMERICAN JOURNAL OF TRANSPLANTATION, Issue 6 2009J. L. Winters In order to protect tissue recipients, the Food and Drug Administration drafted Title 21, Section 1271 of the Code of Federal Regulations 1271 (21 CFR 1271) to address infectious disease risk. These regulations apply to tissues but not vascularized organs. Pancreatic islet cells are regulated under 21 CFR 1271. These regulations require qualification of suppliers of critical materials and services with regard to 21 CFR 1271 compliance. As part of supplier qualification, all organ procurement organizations (OPOs) in the United States were sent a questionnaire covering the key components of these regulations. Of the 57 OPOs, 29 (51%) were in compliance based upon survey results. Twelve (21%) were not compliant in one or more areas. All indicated plans to become compliant. The remaining 15 (27%) either failed or refused to complete the survey, some indicating 21 CFR 1271 did not apply to OPOs. Using 2006 data, OPOs compliant with 21 CFR 1271 recovered 50% of the organs procured in the United States. These findings represent a challenge for allogeneic islet cell transplant programs whose raw material must comply with 21 CFR 1271. OPOs should work toward understanding and complying with 21 CFR 1271. Regulatory agencies should work toward enhancing safety of the pancreas supply by facilitating compliance through harmonization of requirements. [source] Tissue surface tensions guide in vitro self-assembly of rodent pancreatic islet cellsDEVELOPMENTAL DYNAMICS, Issue 8 2007Dongxuan Jia Abstract The organization of endocrine cells in pancreatic islets is established through a series of morphogenetic events involving cell sorting, migration, and re-aggregation processes for which intercellular adhesion is thought to play a central role. In animals, these morphogenetic events result in an islet topology in which insulin-secreting cells form the core, while glucagon, somatostatin, and pancreatic polypeptide-secreting cells segregate to the periphery. Isolated pancreatic islet cells self-assemble in vitro into pseudoislets with the same cell type organization as native islets. It is widely held that differential adhesion between cells of the pancreatic islets generates this specific topology. However, this differential adhesion has never been rigorously quantified. In this manuscript, we use tissue surface tensiometry to measure the cohesivity of spherical aggregates from three immortalized mouse pancreatic islet cell lines. We show that, as predicted by the differential adhesion hypothesis, aggregates of the internally segregating INS-1 and MIN6 beta-cell lines are substantially more cohesive than those of the externally segregating ,-TC line. Furthermore, we show that forced overexpression of P-cadherin by ,-TC cells significantly perturbs the sorting process. Collectively, the data indicate that differential adhesion can drive the in vitro organization of immortalized rodent pancreatic islet cells. Developmental Dynamics 236:2039,2049, 2007. © 2007 Wiley-Liss, Inc. [source] CpG oligodeoxynucleotides accelerate reovirus type 2-triggered insulitis in DBA/1 suckling miceINTERNATIONAL JOURNAL OF EXPERIMENTAL PATHOLOGY, Issue 5 2002T. Hayashi Summary. We reported previously that reovirus type-2 (Reo-2) triggers T-helper (Th) 1-mediated autoimmune insulitis resulting in temporal impaired glucose tolerance (IGT) approximately 10 days post infection (d.p.i) in suckling DBA/1 mice. We hypothesized that CpG motifs in bacteria may enhance virus-induced insulitis through its content of unmethylated CpG motifs. In the infected mice, the intraperitoneal treatment of synthetic 20-base oligodeoxynucleotides with CpG motifs (CpG ODN) caused increase in cumulative incidence of insulitis with IGT, increased serum interferon (IFN)-, concentration, and high frequency of autoantibody against pancreatic islet cells, compared to the infected mice without CpG ODN at 17 d.p.i. Also CD4+ and CD8+ lymphocytes infiltrated in and/or around pancreatic islets in the CpG ODN-treated mice. This evidence suggests that CpG ODN may contribute to accelerate Reo-2-induced autoimmune reaction against pancreatic islet cells via additional effects of Th1 cytokines especially IFN-,. [source] Induced pluripotent stem cells (iPSCs): the emergence of a new champion in stem cell technology-driven biomedical applicationsJOURNAL OF TISSUE ENGINEERING AND REGENERATIVE MEDICINE, Issue 6 2010Anjan Kumar Das Abstract Pluripotent stem cells possess the unique property of differentiating into all other cell types of the human body. Further, the discovery of induced pluripotent stem cells (iPSCs) in 2006 has opened up new avenues in clinical medicine. In simple language, iPSCs are nothing but somatic cells reprogrammed genetically to exhibit pluripotent characteristics. This process utilizes retroviruses/lentiviruses/adenovirus/plasmids to incorporate candidate genes into somatic cells isolated from any part of the human body. It is also possible to develop disease-specific iPSCs which are most likely to revolutionize research in respect to the pathophysiology of most debilitating diseases, as these can be mimicked ex vivo in the laboratory. These models can also be used to study the safety and efficacy of known drugs or potential drug candidates for a particular diseased condition, limiting the need for animal studies and considerably reducing the time and money required to develop new drugs. Recently, functional neurons, cardiomyocytes, pancreatic islet cells, hepatocytes and retinal cells have been derived from human iPSCs, thus re-confirming the pluripotency and differentiation capacity of these cells. These findings further open up the possibility of using iPSCs in cell replacement therapy for various degenerative disorders. In this review we highlight the development of iPSCs by different methods, their biological characteristics and their prospective applications in regenerative medicine and drug screening. We further discuss some practical limitations pertaining to this technology and how they can be averted for the betterment of human life. Copyright © 2010 John Wiley & Sons, Ltd. [source] Entrapment of dispersed pancreatic islet cells in CultiSpher-S macroporous gelatin microcarriers: Preparation, in vitro characterization, and microencapsulationBIOTECHNOLOGY & BIOENGINEERING, Issue 6 2001S. Del Guerra Abstract Immunoprotection of pancreatic islets for successful allo- or xenotransplantation without chronic immunosuppression is an attractive, but still elusive, approach for curing type 1 diabetes. It was recently shown that, even in the absence of fibrotic overgrowth, other factors, mainly insufficient nutrition to the core of the islets, represent a major barrier for long-term survival of intraperitoneal microencapsulated islet grafts. The use of dispersed cells might contribute to solve this problem due to the conceivably easier nutritional support to the cells. In the present study, purified bovine islets, prepared by collagenase digestion and density gradient purification, and dispersed bovine islet cells, obtained by trypsin and DNAsi (viability > 90%), were entrapped into either 2% (w/v) sodium alginate (commonly used for encapsulation purposes) or (dispersed islet cells only) macroporous gelatin microcarriers (CulthiSpher-S, commonly used for the production of biologicals by animal cells). Insulin release studies in response to glucose were performed within 1 week and after 1 month from preparation of the varying systems and showed no capability of dispersed bovine islet cells within sodium alginate microcapsules to sense glucose concentration changes. On the contrary, bovine islet cells entrapped in CulthiSpher-S microcarriers showed maintained capacity of increasing insulin secretion upon enhanced glucose concentration challenge. In this case, insulin release was approximately 60% of that from intact bovine islets within sodium alginate microcapsules. MTT and hematoxylineosin staining of islet cell-containing microcarriers showed the presence of viable and metabolically active cells throughout the study period. This encouraging functional data prompted us to test whether the microcarriers could be immunoisolated for potential use in transplantation. The microcarriers were embedded within 3% sodium alginate, which was then covered with a poly-L-lysine layer and a final outer alginate layer. Maintained insulin secretion function of this system was observed, which raises the possibility of using microencapsulated CulthiSpher-S microcarriers, containing dispersed pancreatic islet cells, in experimental transplantation studies. © 2001 John Wiley & Sons, Inc. Biotechnol Bioeng 75: 741,744, 2001. [source] |