Panavia F (panavia + f)

Distribution by Scientific Domains


Selected Abstracts


Effect of curing mode on bond strength of self-adhesive resin luting cements to dentin

JOURNAL OF BIOMEDICAL MATERIALS RESEARCH, Issue 1 2010
T. R. Aguiar
Abstract In this study, the in vitro bond strength of dual-curing resin cements to indirect composite restorations when the cement was either light polymerized or allowed to only autopolymerize was evaluated. Occlusal dentin surfaces of 56 extracted human third molars were flattened to expose coronal dentin. Teeth were assigned to eight groups (n = 7) according to resin cement products and polymerization modes: conventional cement (Panavia F 2.0; Kuraray Medical) and self-adhesive cements [RelyX Unicem (3M ESPE), BisCem (Bisco), and G-Cem (GC Corp.)]. Cements were applied to prepolymerized resin discs (2-mm-thick Sinfony; 3M ESPE), which were subsequently bonded to the prepared dentin surfaces. The restored teeth were either light-polymerized through the overlying composite according to manufacturers' instructions or were allowed to only self-cure. After 24 h, the teeth and restorations were sectioned to obtain multiple bonded beams (1.0 mm2) and tested in tension at a crosshead speed of 0.5 mm/min until failure. Data (MPa) were analyzed by two-way ANOVA and Tukey test (, = 0.05). Light activation of some cement systems (G-Cem and Panavia F 2.0) increased the bond strength, while the curing mode did not affect the bond strength for some (RelyX Unicem and BisCem). The bond strength in the autopolymerized mode varied among products. In general, the use of self-adhesive resin cements did not provide significantly higher bond strengths than that of a conventional material, and two self-adhesive cements yielded significantly lower bond values (regardless of cure mode) than the other products. © 2010 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2010 [source]


Bond Strength of Two Resin Cements on Dentin Using Different Cementation Strategies

JOURNAL OF ESTHETIC AND RESTORATIVE DENTISTRY, Issue 4 2010
RENATA MARQUES MELO MS
ABSTRACT Purpose:, This study evaluated the microtensile bond strength of two resin cements to dentin either with their corresponding self-etching adhesives or employing the three-step "etch-and-rinse" technique. The null hypothesis was that the "etch-and-rinse" adhesive system would generate higher bond strengths than the self-etching adhesives. Materials and Methods:, Thirty-two human molars were randomly divided into four groups (N = 32, n = 8/per group): G1) ED Primer self-etching adhesive + Panavia F; G2) All-Bond 2 "etch-and-rinse" adhesive + Panavia F; G3) Multilink primer A/B self-etching adhesive + Multilink resin cement; G4) All-Bond 2 + Multilink. After cementation of composite resin blocks (5 × 5 × 4 mm), the specimens were stored in water (37°C, 24 hours), and sectioned to obtain beams (±1 mm2 of adhesive area) to be submitted to microtensile test. The data were analyzed using 2-way analysis of variance and Tukey's test (, = 0.05). Results:, Although the cement type did not significantly affect the results (p = 0.35), a significant effect of the adhesive system (p = 0.0001) was found on the bond strength results. Interaction terms were not significant (p = 0.88751). The "etch-and-rinse" adhesive provided significantly higher bond strength values (MPa) with both resin cements (G2: 34.4 ± 10.6; G4: 33.0 ± 8.9) compared to the self-etching adhesive systems (G1: 19.8 ± 6.6; G3: 17.8 ± 7.2) (p < 0.0001). Pretest failures were more frequent in the groups where self-etching systems were used. Conclusion:, Although the cement type did not affect the results, there was a significant effect of changing the bonding strategy. The use of the three-step "etch-and-rinse" adhesive resulted in significantly higher bond strength for both resin cements on dentin. CLINICAL SIGNIFICANCE Dual polymerized resin cements tested could deliver higher bond strength to dentin in combination with "etch-and-rinse" adhesive systems as opposed to their use in combination with self-etching adhesives. (J Esthet Restor Dent 22:262,269, 2010) [source]


Microtensile Bond Strength of Luting Materials to Coronal and Root Dentin

JOURNAL OF ESTHETIC AND RESTORATIVE DENTISTRY, Issue 3 2005
RICARDO WALTER DDS
ABSTRACT Purpose:: The purpose of this study was to evaluate the microtensile bond strength (,TBS) of two dual-cured resin cements and a glass ionomer cement to coronal dentin versus root dentin. Materials and Methods: RelyX Unicem (3M ESPE, St. Paul, MN, USA) and Panavia F (Kuraray Medical Inc., Tokyo, Japan) were the resin cements used and FujiCEM (GC Corp., Tokyo, Japan) was the glass ionomer cement used. Once separated, the labial coronal and root surfaces of six bovine incisors were ground with 600-grit SiC papers to expose middle dentin. Then, the dentin surfaces were treated following the manufacturers'instructions and a 1 mm thick layer of each material was applied to the flattened coronal and root surfaces. Each material was cured following the manufacturers'recommendations and a composite buildup was made over the cured luting materials for testing purposes. After 24 hours in water at 37°C, the teeth were sectioned into 1 mm × 1 mm × 6 mm beams and tested for ,TBS. The data were analyzed by one- and two-way analysis of variance and Fisher's Protected Least Squares Differences test (p < .05). Results: The ,TBSs to coronal and root dentin were similar within each cement. Comparing the materials, RelyX Unicem presented the highest ,TBS, followed by Panavia F and FujiCEM, respectively (p < .0001). Conclusions: Although there were differences in ,TBS among the materials tested, no significant differences were found between bond strengths to coronal and root substrates. [source]


Bonding to Zirconia Using a New Surface Treatment

JOURNAL OF PROSTHODONTICS, Issue 5 2010
Moustafa N. Aboushelib DDS
Abstract Purpose: Selective infiltration etching (SIE) is a newly developed surface treatment used to modify the surface of zirconia-based materials, rendering them ready for bonding to resin cements. The aim of this study was to evaluate the zirconia/resin bond strength and durability using the proposed technique. Materials and Methods: Fifty-four zirconia discs were fabricated and divided into three groups (n = 18) according to their surface treatment: as-sintered surface (control group), airborne-particle abrasion (50-,m aluminum oxide), and SIE group. The zirconia discs were bonded to preaged composite resin discs using a light-polymerized adhesive resin (Panavia F 2.0). The zirconia/resin bond strength was evaluated using microtensile bond strength test (MTBS), and the test was repeated after each of the following intervals of accelerated artificial aging (AA): thermocycling (10,000 cycles between 5 and 55°C), 4 weeks of water storage (37°C), and finally 26 weeks of water storage (37°C). Silver nitrate nanoleakage analysis was used to assess the quality of zirconia/resin interface. A repeated measures ANOVA and Bonferroni post hoc test were used to analyze the data (n = 18, ,= 0.05) Results: There were significant differences in the MTBS values between the three test groups at each of the test intervals (p < 0.001). AA resulted in reduction in the bond strength of the as-sintered and the particle-abraded groups (5.9 MPa and 27.4, MPa, respectively). Reduction in the bond strength of these groups was explained by the observed nanoleakage across the zirconia/resin interface. The bond strength of the SIE specimens was stable after completion of AA (51.9 MPa), which also demonstrated a good seal against silver nitrate penetration across the zirconia/resin interface. Conclusion: SIE established a strong, stable, and durable bond to zirconia substrates. Conservative resin-bonded zirconia restorations are now possible using this new technique. [source]