Distribution by Scientific Domains

Kinds of Page

  • SD page
  • blue native page
  • first page
  • home page
  • native page
  • new page
  • web page

  • Terms modified by Page

  • page analysis
  • page design
  • page model

  • Selected Abstracts

    Isolation and structural characterization of the Ndh complex from mesophyll and bundle sheath chloroplasts of Zea mays

    FEBS JOURNAL, Issue 11 2005
    Costel C. Darie
    Complex I (NADH: ubiquinone oxidoreductase) is the first complex in the respiratory electron transport chain. Homologs of this complex exist in bacteria, mitochondria and chloroplasts. The minimal complex I from mitochondria and bacteria contains 14 different subunits grouped into three modules: membrane, connecting, and soluble subcomplexes. The complex I homolog (NADH dehydrogenase or Ndh complex) from chloroplasts from higher plants contains genes for two out of three modules: the membrane and connecting subcomplexes. However, there is not much information about the existence of the soluble subcomplex (which is the electron input device in bacterial complex I) in the composition of the Ndh complex. Furthermore, there are contrasting reports regarding the subunit composition of the Ndh complex and its molecular mass. By using blue native (BN)/PAGE and Tricine/PAGE or colorless-native (CN)/PAGE, BN/PAGE and Tricine/PAGE, combined with mass spectrometry, we attempted to obtain more information about the plastidal Ndh complex from maize (Zea mays). Using antibodies, we detected the expression of a new ndh gene (ndhE) in mesophyll (MS) and bundle sheath (BS) chloroplasts and in ethioplasts (ET). We determined the molecular mass of the Ndh complex (550 kDa) and observed that it splits into a 300 kDa membrane subcomplex (containing NdhE) and a 250 kDa subcomplex (containing NdhH, -J and -K). The Ndh complex forms dimers at 1000,1100 kDa in both MS and BS chloroplasts. Native/PAGE of the MS and BS chloroplasts allowed us to determine that the Ndh complex contains at least 14 different subunits. The native gel electrophoresis, western blotting and mass spectrometry allowed us to identify five of the Ndh subunits. We also provide a method that allows the purification of large amounts of Ndh complex for further structural, as well as functional studies. [source]

    Mass spectrometrical analysis of the mitochondrial carrier Aralar1 from mouse hippocampus

    ELECTROPHORESIS, Issue 11 2010
    Seok Heo
    Abstract Aralar1 is a mitochondrial aspartate/glutamate carrier and a key component of the malate,aspartate NADH shuttle system. An analytical approach to obtain high sequence coverage is important to predict conformation, identify splice variants and binding partners or generate specific antibodies. Moreover, a method allowing determination of Aralar1 from brain samples is a prerequisite for evaluating a biological role. Sucrose gradient ultracentrifugation was applied to enrich native membrane protein fractions and these were run on blue-native PAGE, followed by multidimensional gel electrophoresis. Spots from the third-dimensional gel electrophoresis were in-gel digested with trypsin, chymotrypsin and subtilisin. Subsequently, peptides were analyzed by nano-ESI-LC-MS/MS using collision-induced dissociation and electron transfer dissociation modes. ModiroÔ v1.1 along with Mascot v2.2 software was used for data handling. Aralar1 could be clearly separated, unambiguously identified and characterized from protein extracts of mouse hippocampus by the use of the multidimensional gel electrophoretic steps. The combined sequence coverage of Aralar1 from trypsin, chymotrypsin and subtilisin digestions was 99.85%. The results provide the basis for future studies of Aralar1 at the protein chemical rather than at the immunochemical level in the brain and thus challenge and enable determination of Aralar1 levels required for understanding biological functions in health and disease. [source]

    Indications for cell stress in response to adenoviral and baculoviral gene transfer observed by proteome profiling of human cancer cells

    ELECTROPHORESIS, Issue 11 2010
    Christopher Gerner
    Abstract Gene transfer to cultured cells is an important tool for functional studies in many areas of biomedical research and vector systems derived from adenoviruses and baculoviruses are frequently used for this purpose. In order to characterize how viral gene transfer vectors affect the functional state of transduced cells, we applied 2-D PAGE allowing quantitative determination of protein amounts and synthesis rates of metabolically labeled cells and shotgun proteomics. Using HepG2 human hepatoma cells we show that both vector types can achieve efficient expression of green fluorescent protein, which accounted for about 0.1% of total cellular protein synthesis 72,h after transduction. No evidence in contrast was found for expression of proteins from the viral backbones. With respect to the host cell response, both vectors induced a general increase in protein synthesis of about 50%, which was independent of green fluorescent protein expression. 2-D PAGE autoradiographs identified a 3.6-fold increase of ,-actin synthesis in adenovirus transduced cells. In addition shotgun proteomics of cytoplasmic and nuclear extract fractions identified a slight induction of several proteins related to inflammatory activation, cell survival and chromatin function by both virus types. These data demonstrate that commonly used gene transfer vectors induce a response reminiscent of stress activation in host cells, which needs to be taken into account when performing functional assays with transduced cells. [source]

    Single-step purification of the recombinant green fluorescent protein from intact Escherichia coli cells using preparative PAGE

    ELECTROPHORESIS, Issue 17 2009
    Few Ne Chew
    Abstract Mechanical and non-mechanical breakages of bacterial cells are usually the preliminary steps in intracellular protein purification. In this study, the recombinant green fluorescent protein (GFP) was purified from intact Escherichia coli cells using preparative PAGE. In this purification process, cells disruption step is not needed. The cellular content of E. coli was drifted out electrically from cells and the negatively charged GFP was further electroeluted from polyacrylamide gel column. SEM investigation of the electrophoresed cells revealed substantial structural damage at the cellular level. This integrated purification technique has successfully recovered the intracellular GFP with a yield of 82% and purity of 95%. [source]

    Transverse imaging and simulation of dsDNA electrophoresis in microfabricated glass channels

    ELECTROPHORESIS, Issue 23 2008
    Ramsey I. Zeitoun
    Abstract We have observed the non-uniform distribution of DNA molecules during PAGE in a microfabricated system. Confocal laser scanning microscopy was used to visualize fluorescently labeled DNA during electrophoretic migration. The distribution of double-stranded DNA larger than 100,bp is observed to transition from a center-biased motion on the transverse plane 1,cm downstream from injection to an edge-biased motion 2,cm downstream. Although this distribution increased with increasing dsDNA size in a cross-linked gel, no similar distribution was found with the same dsDNA molecules in a linear polyacrylamide solution (6%). Simulations of DNA distribution in gels suggest that DNA distribution non-uniformities may be caused by biased electrophoretic migration resulting from motion in an inhomogeneous gel system. [source]

    Identification of rat urinary glycoproteome captured by three lectins using gel and LC-based proteomics

    ELECTROPHORESIS, Issue 21 2008
    Pyong-Gon Moon
    Abstract Many different types of urine proteome studies have been done, but urine glycoprotein studies are insufficient. Therefore, we studied the glycoproteins from rat urine, which could be used to identify biomarkers in an animal model. First, urinary proteins were prepared by using the dialysis and lyophilizing methods from rat urine. Glycoproteins enriched with lectin affinity purification, concanavalin A, jacalin and wheat germ agglutinin from the urinary proteins were separated by means of reverse-phase fast protein LC (FPLC) or 1-D PAGE. Each FPLC fraction and 1-D PAGE gel band were trypsin-digested and analyzed by means of nanoLC-MS/MS. LC-MS/MS analyses were carried out by using linear ion trap MS. A total of 318 rat urinary glycoproteins were identified from the FPLC fractions and gel bands; approximately 90% of identified proteins were confirmed as glycoproteins in Swiss-Prot. Many glycoproteins, known as biomarkers, including C-reactive protein, uromodulin, amyloid beta A4 protein, alpha-1-inhibitor 3, vitamin D-binding protein, kallikrein 3 and fetuin-A were identified in this study. By studying urinary glycoproteins collected from rat, these results may help to assist in identifying urinary biomarkers regarding various types of disease models. [source]

    The application of perfluorooctanoate to investigate trimerization of the human immunodeficiency virus-1 gp41 ectodomain by electrophoresis

    ELECTROPHORESIS, Issue 15 2008
    Chi-Hui Lin
    Abstract The transmembrane glycoprotein gp41 of human immunodeficiency virus has been proposed to form trimer-of-hairpin during virus-cell membrane fusion. To investigate its oligomerization propensity under soluble and membrane-mimic conditions, sodium salt of perfluorooctanoate (PFO) was applied. A recombinant gp41 ectodomain devoid of disulfide linkage was overexpressed in Escherichia coli and characterized by MS and circular dichroism spectropolarimetry in PFO solution in comparison to SDS. The helical content of this ectodomain in PFO is higher than that in SDS. Notably, PFO employed in PAGE clearly conduced to the formation of trimer under the optimized condition as visualized in the gel. In addition, the proteins expressed from the two mutants in the heptad repeat (HR) domains of gp41, I62P, and N126K, were also examined by the PFO-PAGE analysis for functional ramification of molecular organization. Remarkably, the I62P mutation completely abolished the gp41 trimer formation, whereas the N126K mutation resulted in a more stable trimer. The data suggested that PFO-PAGE analysis is appropriate for evaluating the effect of mutations on the trimerization of gp41 and other fusion proteins which may be implicated in the alteration of their fusogenicity. [source]

    Sensitive fluorescence detection of polyphosphate in polyacrylamide gels using 4,,6-diamidino-2-phenylindol

    ELECTROPHORESIS, Issue 19 2007
    Stephanie A. Smith Dr.
    Abstract PAGE is commonly used to identify and resolve inorganic polyphosphates (polyP). We now report highly sensitive and specific staining methods for polyP in polyacrylamide gels based on the fluorescent dye, 4,,6-diamidino-2-phenylindol (DAPI). DAPI bound to polyP in gels fluoresced yellow while DAPI bound to nucleic acids or glycosaminoglycans fluoresced blue. Inclusion of EDTA prevented staining of glycosaminoglycans by DAPI. We also identified conditions under which DAPI that was bound to polyP (but not nucleic acids or other anionic polymers) rapidly photobleached. This allowed us to develop an even more sensitive and specific negative staining method that distinguishes polyP from nucleic acids and glycosaminoglycans. The lower LOD using DAPI negative staining was 4,pmol (0.3,ng) phosphate per band, compared to conventional toluidine blue staining with a lower LOD of 250,pmol per band. [source]

    Analysis of plasma protein adsorption onto PEGylated nanoparticles by complementary methods: 2-DE, CE and Protein Lab-on-chip® system

    ELECTROPHORESIS, Issue 13 2007
    Hyun Ryoung Kim
    Abstract The biodistribution of colloidal carriers after their administration in vivo depends on the adsorption of some plasma proteins and apolipoproteins on their surface. Poly(methoxypolyethyleneglycol cyanoacrylate- co -hexadecylcyanoacrylate) (PEG-PHDCA) nanoparticles have demonstrated their capacity to cross the blood,brain barrier (BBB) by a mechanism of endocytosis. In order to clarify this mechanism at the molecular level, proteins and especially apolipoproteins adsorbed at the surface of PEG-PHDCA nanoparticles were analyzed by complementary methods such as CE and Protein Lab-on-chip® in comparison with 2-D PAGE as a method of reference. Thus, the ability of those methodologies to identify and quantify human and rat plasma protein adsorption onto PEG-PHDCA nanoparticles and conventional PHDCA nanoparticles was evaluated. The lower adsorption of proteins onto PEG-PHDCA nanoparticles comparatively to PHDCA nanoparticles was evidenced by 2-D PAGE and Protein Lab-on-chip® methods. CE allowed the quantification of adsorbed proteins without the requirement of a desorption procedure but failed, in this context, to analyze complex mixtures of proteins. The Protein Lab-on-chip® method appeared to be very useful to follow the kinetic of protein adsorption from serum onto nanoparticles; it was complementary to 2-D PAGE which allowed the identification (with a relative quantification) of the adsorbed proteins. The overall results suggest the implication of the apolipoprotein E in the mechanism of passage of PEG-PHDCA nanoparticles through the BBB. [source]

    Genetic microheterogeneity of human transthyretin detected by IEF

    ELECTROPHORESIS, Issue 12 2007
    Klaus Altland Professor Dr.
    Abstract Mutations of the human transthyretin (TTR) gene have attracted medical interest as a cause of amyloidosis. Recently, we have described in detail an electrophoretic procedure with PAGE followed by IEF in urea gradients for the study of the microheterogeneity of TTR monomers (Altland, K., Winter, P., Sauerborn, M. K., Electrophoresis 1999, 20, 1349,1364). In this paper, we present a study on 49 different mutations of TTR including 33 that result in electrically neutral amino acid substitutions. The aims of the investigation were to test the sensitivity of the procedure to detect TTR variants in patients with TTR amyloidosis and their relatives and to identify some common characteristics that could explain the amyloidogenicity of these variants. We found that all tested amyloidogenic mutations could be detected by our method with the exception of those for which the corresponding variant was absent in plasma samples. Most of the electrically neutral amyloidogenic TTR variants had in common a reduced conformational stability of monomers by the activity of protons and urea. For three variants, e.g. TTR,F64L, TTR,I107V and TTR,V122I, the monomers had a conformational stability close to that of normal monomers but we found experimental and structural arguments for a weakening of the monomer-monomer contact. All types of amyloidogenic mutations affected the stability of TTR tetramers. [source]

    Use of poly(vinyl alcohol)-coated capillaries for separation of amino-terminated polyamidoamine dendrimers

    ELECTROPHORESIS, Issue 3 2007
    Britton Carter
    Abstract Characterization of amino-terminated polyamidoamine dendrimers by CE suffers from a lack of resolution for higher generations and poor between-day reproducibility of retention times. Under optimal conditions of temperature, voltage, and sample amount, 0,5,generations of dendrimers could be resolved with a bare fused-silica capillary. However, reproducibility was poor due to potential interactions of the polycationic dendrimers with the uncoated quartz capillary wall. Use of a poly(vinyl alcohol)-coated capillary significantly decreased the migration times of the nanomolecules without compromising resolution. Dendrimer mixtures containing generations,0,5 are separated as discrete, nonoverlapping peaks in about 15,min. In addition, the between-day precision of retention times was dramatically improved without the need for internal standards or data normalization. Dendrimers of various generations and cores run on different days showed an RSD of retention times of less than 4%. The poly(vinyl alcohol) coating was very stable as shown by the excellent precision of migration times obtained on a capillary used for a month with more than 100,injections. Similar to PAGE, separation of polyamidoamine dendrimers on a bare fused-silica and poly(vinyl alcohol)-coated capillary showed an exponential relationship between migration times and calculated charge density of the nanomolecules. [source]

    Sample pooling in 2-D gel electrophoresis: A new approach to reduce nonspecific expression background

    ELECTROPHORESIS, Issue 22 2006
    Marc Weinkauf
    Abstract Protein expression alterations unrelated to an investigated phenotype are accumulated in most cell line models during establishment. Performing a whole proteome screening of lymphoma cell lines, we established a method to reduce the influence of protein expression unrelated to the distinct investigated phenotype. In 2-D PAGE, the comprehensive analysis of a large number of protein spots would be simplified by pooling cell line samples of the investigated phenotype. Applying this pooling approach, unrelated alterations of single samples are ,muted' by dilution. Analysing two different lymphoma subtypes (follicular and mantle cell lymphoma) by this method, spots originating in only single cell lines were reduced by 72% (650/900), whereas even modestly altered expression of protein spots detected in all lines were reliably detected in the pooled protein gels. We conclude that our pooling approach is a preferable approach to reliably detect a common protein expression pattern and may even allow proteomic analysis of clinical samples with limited amounts of sample material, even with minimal cell numbers as low as 1×106. [source]

    Time-based analysis of silver-stained proteins in acrylamide gels

    ELECTROPHORESIS, Issue 10 2006
    Bertram Becher Dr.
    Abstract Silver staining of proteins after PAGE often remains the method of choice in many laboratories. Nevertheless, it is known that quantification of protein levels is keenly restricted to a small range of protein concentrations leading to an over- or underestimation of protein amounts. To overcome this, a time-based analysis method was developed to avoid the saturation effect of the silver-staining reaction, thus resulting in an improved dynamic range of the gel image produced and therefore better quantification of proteins. Instead of the well-known end-point image analysis, gray intensities of time series images of a developing gel are determined and times until a threshold gray value is reached are calculated. These times are used to calculate a new grayscale image which can be analyzed using commercial image processing software. [source]

    Separation of nuclear protein complexes by blue native polyacrylamide gel electrophoresis

    ELECTROPHORESIS, Issue 7 2006
    Zora Nováková
    Abstract The nucleus is a highly structured organelle with distinct compartmentalization of specific functions. To understand the functions of these nuclear compartments, detailed description of protein complexes which form these structures is of crucial importance. We explored therefore the potential of blue native PAGE (BN-PAGE) method for the separation of nuclear protein complexes. We focused on (i),solubility and stability of nuclear complexes under conditions prerequisite for the separation by BN-PAGE, (ii),improved separation of native nuclear protein complexes using 2-D colorless native/blue native PAGE (CN-/BN-PAGE), and (iii),mass spectrometric analysis of protein complexes which were isolated directly from native 1-D or from 2-D CN/BN-PAGE gels. The suitability of BN-PAGE for nuclear proteomic research is demonstrated by the successful separation of polymerase,I and polymerase,II complexes, and by mass spectrometric determination of U1 small nuclear ribonucleoprotein particle composition. Moreover, practical advice for sample preparation is provided. [source]

    Separation of proteins with a molecular mass difference of 2,kDa utilizing preparative double-inverted gradient polyacrylamide gel electrophoresis under nonreducing conditions: Application to the isolation of 24,kDa human growth hormone

    ELECTROPHORESIS, Issue 23 2005
    Juan J. Bustamante
    Abstract A method for separating proteins with a molecular mass difference of 2,kDa using SDS-PAGE under nonreducing conditions is presented. A sample mixture containing several human growth hormone (hGH) isoforms was initially separated on a weak anion-exchange column. Fractions rich in 24,kDa hGH as determined by analytical SDS-PAGE were pooled and further separated by cation-exchange chromatography. The fractions pooled from the cation-exchange chromatography contained two hGH isoforms with a 2,kDa molecular mass difference according to SDS-PAGE analysis, 22 and 24,kDa hGH. The 22 and 24,kDa hGH were separated using continuous-elution preparative double-inverted gradient PAGE (PDG-PAGE) under nonreducing conditions. The preparative electrophoresis gel was composed of three stacked tubular polyacrylamide matrices, a 4% stacking gel, a 13,18% linear gradient gel, and a 15,10% linear inverted gradient gel. Fractions containing purified 24,kDa hGH were pooled and Western blot analysis displayed immunoreactivity to antihGH antibodies. PDG-PAGE provides researchers with an electrophoretic technique to preparatively purify proteins under nonreducing conditions with molecular mass differences of 2,kDa. [source]

    Biomarker discovery in rat plasma for estrogen receptor-, action

    ELECTROPHORESIS, Issue 23 2005
    Tom G. Holt Dr.
    Abstract To support in vivo screening efforts for estrogen receptor (ER) subtype selective therapeutic agents, we initiated work to discover surrogate markers (biomarkers) in blood plasma that would change in response to ER subtype-specific action. We used a proteomic approach employing strong anion exchange chromatography (SAX), PAGE, and MS to identify potential plasma markers for selective ER-, action. The methodology was used to compare blood from vehicle-treated rats to blood from rats treated with either 17,-estradiol (an ER-,/ER-, agonist) or compound 1 (17,-ethynyl-[3,2-c]pyrazolo-19-nor-4-androstene-17,-ol, an ER-,-selective agonist). Blood samples were first fractionated by SAX to separate fractions containing dominant common plasma proteins from fractions enriched for less-abundant plasma proteins. 1-D PAGE analysis of fractions depleted of dominant plasma proteins revealed treatment-specific changes in protein profiles. Protein bands that changed reproducibly in response to ER-, action were excised from the gel, separated by capillary LC, and identified by microspray ESI-MS. Using this method, the plasma levels of two proteins, transthyretin and apolipoprotein E, were shown to decrease in response to ER-, agonism. The method lacked the sensitivity to identify the known, 1000-fold less-abundant, estrogenic marker prolactin (PRL). However, using a commercial RIA and immunoblots, we showed that PRL levels increase significantly in response to treatment with the ER-, selective agonist, compound 1. [source]

    Analysis of poly(amidoamine)-succinamic acid dendrimers by slab-gel electrophoresis and capillary zone electrophoresis

    ELECTROPHORESIS, Issue 15 2005
    Xiangyang Shi
    Abstract Ethylenediamine (EDA)-core poly(amidoamine) (PAMAM) succinamic acid dendrimers (Ex.SAH, where x refers to the generation) were synthesized and analyzed by polyacrylamide gel electrophoresis (PAGE), size-exclusion chromatography (SEC), potentiometric acid-base titration, and capillary zone electrophoresis (CZE). Various generations (E1.SAH,E7.SAH) PAMAMs and a succinamic acid terminated core-shell tecto(dendrimer) (E5(E3.SAH)n) were first analyzed by PAGE. PAGE results show that the relative mobilities of generation,2 to generation,7 dendrimers decreased with the increasing number of generations. The molecular mass of a generation,5 core generation,3 shell tecto(dendrimer) (denoted as E5(E3.SAH)n) was determined to be between the Mw of E6.SAH and E7.SAH. CZE analysis allowed the evaluation of electrophoretic properties of given-generation dendrimers. The electrophoretic mobilities of individual generations PAMAM polyanions are similar, indicating that the separation mainly depends on their approximately identical charge/mass ratio. The E5(E3.SAH)n tectodendrimer had a lower electrophoretic mobility, which was consistent with its lower charge/mass ratio. The combination of PAGE and CZE analysis provides an alternative and effective way to characterize this group of PAMAM-succinamic acid dendrimers. [source]

    Narrow-band fractionation of proteins from whole cell lysates using isoelectric membrane focusing and nonporous reversed-phase separations

    ELECTROPHORESIS, Issue 7-8 2004
    Yi Zhu
    Abstract Preparative isoelectric focusing (PIEF) is used to achieve narrow-band fractionation of proteins from whole cell lysates of Escherichia coli (E. coli). Isoelectric membranes create well-defined pH ranges that fractionate proteins by isoelectric point (pI) upon application of an electric potential. A commercial IsoPrime device (Amersham-Pharmacia BioTech) is modified for the PIEF separation to lessen run volumes significantly. Two-dimensional polyacrylamide gel electrophoresis (2-D PAGE) analysis of chamber contents indicates that excellent pH fractionation is achieved with little overlap between chambers. PIEF pH fractions are further separated using nonporous reversed-phase high-performance liquid chromatography (NPS-RP-HPLC) and HPLC eluent is analyzed on-line by electrospray ionization-time of flight-mass spectrometry (ESI-TOF-MS) for intact protein molecular weight (MW) analysis. The result is a pI versus MW map of bacterial protein content. IEF fractionation down to 0.1 pH units combined with intact protein MW values result in a highly reproducible map that can be used for comparative analysis of different E. coli strains. [source]

    Sodium dodecyl sulfate-capillary gel electrophoresis of polyethylene glycolylated interferon alpha

    ELECTROPHORESIS, Issue 3 2004
    Dong H. Na
    Abstract Sodium dodecyl sulfate-capillary gel electrophoresis (SDS-CGE) using a hydrophilic replaceable polymer network matrix was applied to characterize the polyethylene glycol(PEG)ylated interferon alpha (PEG-IFN). The SDS-CGE method resulted in a clearer resolution in both the PEG-IFN species and the native IFN species. The distribution profile of PEGylation determined by SDS-CGE was consistent with that obtained by SDS-polyacrylamide gel electrophoresis (PAGE) with Coomassie blue or barium iodide staining. The result was also compared using matrix-assisted laser desorption/ionization-time of flight-mass spectrometry. SDS-CGE was also useful for monitoring the PEGylation reaction to optimize the reaction conditions, such as reaction molar ratio. This study shows the potential of SDS-CGE as a new method for characterizing the PEGylated proteins with advantages of speed, minimal sample consumption and high resolution. [source]

    Polyacrylamide gel electrophoresis followed by sodium dodecyl sulfate gradient polyacrylamide gel electrophoresis for the study of the dimer to monomer transition of human transthyretin

    ELECTROPHORESIS, Issue 14 2003
    Klaus Altland
    Abstract Familial amyloidotic polyneuropathy (FAP) is caused by mutations which destabilize transthyretin (TTR) and facilitate the aggregation into extracellular amyloid fibrils preferentially in peripheral nerve and heart tissues. Therapeutic and preventive trials for FAP at the plasma TTR level require a careful study of the destabilization of TTR under variable conditions. We have developed a simple double one-dimensional (D1-D) electrophoretic procedure with polyacrylamide gel electrophoresis (PAGE) followed by sodium dodecylsulfate (SDS) gradient PAGE to study the dimer to monomer transition. TTR is first isolated by PAGE from other plasma proteins. The gel strip containing the TTR fraction is incubated in 2% SDS under varying conditions of temperature, buffer composition, pH, and additives like urea and/or a sulfhydryl-reactive agent, followed by SDS-gradient PAGE for the separation of TTR dimers and monomers. We demonstrate that an unidirectional dimer to monomer transition of normal TTR is achieved at 70,80°C in neutral to mild alkaline buffers or at 37°C and slightly acidic pH (6,7). Addition of urea favors the transition into monomers. Amyloidogenic mutations like amyloidogenic TTR (ATTR)-V30M or ATTR-I107V favor the transition into monomers in buffer systems close to the physiological pH of human plasma. We conclude that this finding has to be considered by any hypothesis on ATTR-derived amyloidogenesis. [source]

    Sodium dodecyl sulfate versus acid-labile surfactant gel electrophoresis: Comparative proteomic studies on rat retina and mouse brain

    ELECTROPHORESIS, Issue 4 2003
    Simone König
    Abstract A long-chain derivative of 1,3-dioxolane sodium propyloxy sulfate, with similar denaturing and electrophoretic properties as SDS, and facilitated protein identification following polyacrylamide gel electrophoresis (PAGE) for Coomassie-stained protein bands, has been tested. Comparative acid-labile surfactant/sodium dodecyl sulfate two-dimensional (ALS/SDS 2-D)-PAGE experiments of lower abundant proteins from the proteomes of regenerating rat retina and mouse brain show that peptide recovery for mass spectrometry (MS) mapping is significantly enhanced using ALS leading to more successful database searches. ALS may influence some procedures in proteomic analysis such as the determination of protein content and methods need to be adjusted to that effect. The promising results of the use of ALS in bioanalytics call for detailed physicochemical investigations of surfactant properties. [source]

    Two-dimensional gel analysis of stress proteins identified in Chironomus flaviplumus (Diptera: Chironomidae) exposed to 4-nonylphenol

    Myoung Chul KIM
    Abstract Toxicity of 4-nonylphenol (4-NP) in the Chironomidae Chironomus flaviplumus was analyzed using a proteomics approach that involved identifying proteins by two-dimensional polyacrylamide gel electrophoresis (2-D PAGE). Proteome analysis of 4-NP-treated samples on silver stained gels found alterations in the expression levels of three proteins compared with control samples. Hsp70 proteins, so-called stress proteins, were studied in Chironomus flaviplumus exposed to different concentrations of 4-nonylphenol (0, 30, 100, 150, 300 and 600 mg/L) in the laboratory and in the field in captured animals from site 1 (1 km from a chemical factory) and site 3 (16 km from a chemical factory). Hsp70 proteins were found in all samples tested, including controls, but differed in their expression levels. At more polluted sites (site 1), the samples treated with higher concentrations of 4-NP more strongly expressed Hsp70. 2-D spots were induced or enhanced in gels following injection of 4-NP. Therefore, the induction of stress protein expression in Chironomus flaviplumus, in particular Hsp70, can be used as a biomarker for the evaluation of environmental conditions. [source]

    Purification and Characterization of Acid Phosphatase from the Egg of the Lady Beetle, Harmonia axyridis (Coccinellidae: Coleoptera)

    Jun Hyuk LEE
    ABSTRACT Acid phosphatase (AP) in the egg of the lady beetle, Harmonia axyridis, was purified and characterized. Ammonium sulfate precipitation, CM column and isoelectrofocusing (IEF) were applied to purify an estimated molecular weight of 66 kDa AP. The purity was checked by SDS PAGE, native PAGE and Western blot. AP was detected in the hemolymph of the female and the egg, but not in the male on the blotting. Km of AP for a substrate, p -nitrophenyl phosphate (p -NPP), was 1.64 x 10 -4 M. AP had the optimum enzymatic activity at pH 3.5. In inhibition tests performed with various chemicals, ammonium molybdate suppressed 99% of the enzyme activity of AP even at the concentration of 5 x 10 -4 mM. AP was stable up to 50°C. [source]

    Labial Gland and Its Protein Patterns of Hydropsychid Caddisfly (Hydropsyche kozhantschikovi Martynov: Trichoptera)

    Sang-Chan PARK
    ABSTRACT There is a pair of labial gland of hydropsychid caddisfly (Hydropsyche kozhantschikovi Martynov) larva. It is in ,Z' formation in the body and the total length is about 20 mm. Hydropsychid caddishfly larvae that were raised under the lab conditions were able to form a nest-spining by connecting the small grains of sand provided. By repeatedly treating the extracted labial gland with methanol/D.W., the cell layer was removed. Accordingly, only the matrix within the labial gland that did not dissolve in water was obtained. The matrix inside the methanol/D.W. treated labial gland was dissolved with 5% acetic acid. Then the results of an acidic electrophoresis with a number of conditions indicated that 5% acetic acid/ 5 M urea/ 8% PAGE was the most effective. Moreover, the result of 2-D PAGE on the labial gland of these hydropsychid caddisfly larva, the number of proteins in the labial gland including the cell layer was about 350 and the number of proteins in the labial gland treated with methanol/D.W. was about 80, showing a substantially small number of proteins. [source]

    Oligonucleotide Duplexes with Tethered Photoreactive Ruthenium(II) Complexes: Influence of the Ligands and Their Linker on the Photoinduced Electron Transfer and Crosslinking Processes of the Two Strands

    Stéphanie Deroo
    Abstract The photoreactivity of new RuII -oligonucleotide conjugates is investigated in the presence of their complementary strands. The goal is to determine the origins of different effects of parameters that control the photocrosslinking process of the two strands. Therefore, two RuII compounds, either [Ru(tap)3]2+or [Ru(tap)2phen]2+ (tap = 1,4,5,8-tetraazaphenanthrene, phen = 1,10-phenanthroline) with different oxidation powers, were tethered with different linkers to either the 5,- or 3,-phosphate end of the probe strand before hybridization with the complementary strand. These systems were studied by time-resolved emission spectroscopy, UV/Vis absorption experiments, PAGE and MS (ESI) analyses. The best yields of photocrosslinking (45,%) obtained with [Ru(tap)3]2+ tethered to the 3,-position are due to (i) a higher oxidation power of the complex and (ii) its attachment at the 3,-position. Indeed, this tethering favours the interaction of the Ru compound with the duplex and, therefore, inhibits its photodechelation. This work allows better design of sequence-specific DNA photodamaging agents prior to biological applications.(© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2009) [source]

    An assay system for the detection of phospholipase C activity

    Markus Durban
    Abstract Phospholipase C (PLC, EC enzymes specifically hydrolyze the C-O-P-bond in phospholipids, yielding sn -1, 2(2, 3)-diglycerides and a phosphate residue bearing the corresponding head group. Biochemical characterization of PLC requires methods for determination of activity. During characterization and purification, proteins are separated by polyacrylamide gel electrophoresis (PAGE). For direct identification and visualization of PLC, a new assay for activity staining in native and renatured SDS-PAGE is described. Incubation of a gel containing an active PLC in the presence of ,-naphthylphosphorylcholine leads to ,-naphthol formation. This reacts with the diazonium salt Fast Red, forming a red dye which allows clear determination of PLC purity, molecular weight and substrate specificity. The assay was verified using commercially available PC-PLC and new PC-PLC-producing Bacillus cereus strains. The substrate ,-NPC was prepared by chemical synthesis at an overall yield of 12%. [source]

    Distribution of SIBLING proteins in the organic and inorganic phases of rat dentin and bone

    Bingzhen Huang
    The SIBLING protein family is a group of non-collagenous proteins (NCPs) that includes dentin sialophosphoprotein (DSPP), dentin matrix protein 1 (DMP1), bone sialoprotein (BSP), and osteopontin (OPN). In the present study, we compared these four proteins in different phases of rat dentin and bone. First, we extracted NCPs in the unmineralized matrices and cellular compartments using guanidium-HCl (G1). Second, we extracted NCPs closely associated with hydroxyapatite using an EDTA solution (E). Last, we extracted the remaining NCPs again with guanidium-HCl (G2). Each fraction of Q-Sepharose ion-exchange chromatography was analyzed using sodium dodecyl sulfate,polyacrylamide gel electrophoresis (SDS,PAGE), Stains-All stain, and with western immunoblotting. In dentin, the NH2 -terminal fragment of DSPP and its proteoglycan form were primarily present in the G1 extract, whereas the COOH-terminal fragment of DSPP was present exclusively in the E extract. The processed NH2 -terminal fragment of DMP1 was present in G1 and E extracts, whereas the COOH-terminal fragment of DMP1 existed mainly in the E extract. Bone sialoprotein was present in all three extracts of dentin and bone, whereas OPN was present only in the G1 and E extracts of bone. The difference in the distribution of the SIBLING proteins between organic and inorganic phases supports the belief that these molecular species play different roles in dentinogenesis and osteogenesis. [source]

    Light-induced gene expression of fructose 1,6-bisphosphate aldolase during heterotrophic growth in a cyanobacterium, Synechocystis sp.

    FEBS JOURNAL, Issue 1 2009
    PCC 680
    Synechocystis sp. PCC 6803 exhibits light-activated heterotrophic growth (LAHG) under dark conditions with glucose as a carbon source. The light activation is remarkable at a late period of photoautotrophic preculture, such as the late-linear and stationary growth phases. To understand the physiological effects of light irradiation and glucose under LAHG conditions, their effects on the expression of soluble proteins were analyzed by means of 2D-PAGE. Various soluble proteins, which were minimal under photoautotrophic preculture conditions, were observed clearly under LAHG conditions, suggesting that proteins were synthesized actively under these conditions. Fructose 1,6-bisphosphate aldolase, one of the glycolytic enzymes, was found to be induced under LAHG conditions on 2D-PAGE. The activity of fructose 1,6-bisphosphate aldolase, which had decreased during photoautotrophic preculture, also increased under LAHG conditions, similar to the mRNA level of the encoding gene, fbaA. In addition, we found that a deletion mutant of sll1330, a putative gene containing a helix-turn-helix DNA-binding motif, could not grow under LAHG conditions, whereas it could grow photoautotrophically. The increases in the protein level of FbaA and fbaA gene expression observed in wild-type cells under LAHG conditions were greatly inhibited in the deletion mutant. These results suggest that the regulation of fbaA gene expression by way of sll1330 is one of the important processes in Synechocystis sp. PCC 6803 under light pulse LAHG conditions. [source]

    Native and subunit molecular mass and quarternary structure of the hemoglobin from the primitive branchiopod crustacean Triops cancriformis

    FEBS JOURNAL, Issue 17 2006
    Morgane Rousselot
    Many branchiopod crustaceans are endowed with extracellular, high-molecular-weight hemoglobins whose exact structural characteristics have remained a matter of conjecture. By using a broad spectrum of techniques, we provide precise and coherent information on the hemoglobin of one of the phylogenetically ,oldest' extant branchiopods, the tadpole shrimp Triops cancriformis. The hemoglobin dissociated under reducing conditions into two subunits, designated TcHbA and TcHbB, with masses of 35 775 ± 4 and 36 055 ± 4 Da, respectively, determined by ESI-MS. Nonreducing conditions showed only two disulfide-bridged dimers, a homodimer of TcHbA, designated D1 (71 548 ± 5 Da), and the heterodimer D2 (71 828 ± 5 Da). Carbamidomethylation of free SH groups revealed the presence of three cysteines per subunit and indicated one intrasubunit and one intersubunit disulfide bridge. Ultracentrifugation and light-scattering experiments under nondenaturating conditions yielded mass estimates that suggested an uneven number of 17 subunits forming the native hemoglobin. This unrealistic number resulted from the presence of two size classes (16-mer and 18-mer), which were recognized by native PAGE and Ferguson plot analysis. ESI-MS revealed three hemoglobin isoforms with masses of 588.1 kDa, 662.0 kDa, and 665.0 kDa. The 16-mer and the smaller 18-mer species are supposed to be composed of TcHbA only, given the dominance of this subunit type in SDS/PAGE. Transmission electron microscopy of negatively stained specimens showed a population of compact molecules with geometrical extensions of 14, 16 and 9 nm. The proposed stoichiometric model of quarternary structure provides the missing link to achieve a mechanistic understanding of the structure,function relationships among the multimeric arthropodan hemoglobins. [source]

    Purification, characterization, cDNA cloning and nucleotide sequencing of a cellulase from the yellow-spotted longicorn beetle, Psacothea hilaris

    FEBS JOURNAL, Issue 16 2003
    Masahiro Sugimura
    A cellulase (endo-,-1,4-glucanase, EC was purified from the gut of larvae of the yellow-spotted longicorn beetle Psacothea hilaris by acetone precipitation and elution from gels after native PAGE and SDS/PAGE with activity staining. The purified protein formed a single band, and the molecular mass was estimated to be 47 kDa. The purified cellulase degraded carboxymethylcellulose (CMC), insoluble cello-oligosaccharide (average degree of polymerization 34) and soluble cello-oligosaccharides longer than cellotriose, but not crystalline cellulose or cellobiose. The specific activity of the cellulase against CMC was 150 µmol·min,1·(mg protein),1. TLC analysis showed that the cellulase produces cellotriose and cellobiose from insoluble cello-oligosaccharides. However, a glucose assay linked with glucose oxidase detected a small amount of glucose, with a productivity of 0.072 µmol·min,1·(mg protein),1. The optimal pH of P. hilaris cellulase was 5.5, close to the pH in the midgut of P. hilaris larvae. The N-terminal amino-acid sequence of the purified P. hilaris cellulase was determined and a degenerate primer designed, which enabled a 975-bp cDNA clone containing a typical polyadenylation signal to be obtained by PCR and sequencing. The deduced amino-acid sequence of P. hilaris cellulase showed high homology to members of glycosyl hydrolase family 5 subfamily 2, and, in addition, a signature sequence for family 5 was found. Thus, this is the first report of a family 5 cellulase from arthropods. [source]