Arthropod Orders (arthropod + order)

Distribution by Scientific Domains


Selected Abstracts


Does Coastal Foredune Stabilization with Ammophila arenaria Restore Plant and Arthropod Communities in Southeastern Australia?

RESTORATION ECOLOGY, Issue 3 2000
Cameron E. Webb
Abstract In this study we examine whether stabilization of denuded coastal foredunes in southeastern Australia with the exotic grass species Ammophila arenaria (marram grass) restores plant and ground-active arthropod assemblages characteristic of undisturbed foredunes. Vascular plants and arthropods were sampled from foredunes that had been stabilized with marram grass in 1982, and from foredunes with no obvious anthropogenic disturbance (control dunes). All arthropods collected were sorted to Order, and ants (81.5% of all specimens) were further sorted to morphospecies. Abundance within arthropod Orders, as well as richness, composition, and structure of the plant and ant assemblages from control and stabilized dunes, were compared. The abundance of Diptera was significantly greater on stabilized dunes, while the abundance of Isopoda was significantly greater on control dunes. There were no significant differences in morphospecies richness or composition of ant assemblages on the two dunes types, although some differences in the abundances of individual morphospecies were observed. By contrast, stabilized dunes exhibited lower plant species richness and highly significant differences in plant species composition, due mainly to the large projected foliage cover of marram grass. The study revealed that after 12 years, the vegetation composition and structure of stabilized dunes was still dominated by marram grass and, as a result, invertebrate assemblages had not been restored to those characteristic of undisturbed foredunes. [source]


Identification, physiological actions, and distribution of TPSGFLGMRamide: a novel tachykinin-related peptide from the midgut and stomatogastric nervous system of Cancer crabs

JOURNAL OF NEUROCHEMISTRY, Issue 5 2007
Elizabeth A. Stemmler
Abstract In most invertebrates, multiple species-specific isoforms of tachykinin-related peptide (TRP) are common. In contrast, only a single conserved TRP isoform, APSGFLGMRamide, has been documented in decapod crustaceans, leading to the hypothesis that it is the sole TRP present in this arthropod order. Previous studies of crustacean TRPs have focused on neuronal tissue, but the recent demonstration of TRPs in midgut epithelial cells in Cancer species led us to question whether other TRPs are present in the gut, as is the case in insects. Using direct tissue matrix assisted laser desorption/ionization Fourier transform mass spectrometry, in combination with sustained off-resonance irradiation collision-induced dissociation, we found that at least one additional TRP is present in Cancer irroratus, Cancer borealis, Cancer magister, and Cancer productus. The novel TRP isoform, TPSGFLGMRamide, was present not only in the midgut, but also in the stomatogastric nervous system (STNS). In addition, we identified an unprocessed TRP precursor APSGFLGMRG, which was detected in midgut tissues only. TRP immunohistochemistry, in combination with preadsorption studies, suggests that APSGFLGMRamide and TPSGFLGMRamide are co-localized in the stomatogastric ganglion (STG), which is contained within the STNS. Exogenous application of TPSGFLGMRamide to the STG elicited a pyloric motor pattern that was identical to that elicited by APSGFLGMRamide, whereas APSGFLGMRG did not alter the pyloric motor pattern. [source]


Effects of predatory ants on lower trophic levels across a gradient of coffee management complexity

JOURNAL OF ANIMAL ECOLOGY, Issue 3 2008
S. M. Philpott
Summary 1Ants are important predators in agricultural systems, and have complex and often strong effects on lower trophic levels. Agricultural intensification reduces habitat complexity, food web diversity and structure, and affects predator communities. Theory predicts that strong top-down cascades are less likely to occur as habitat and food web complexity decrease. 2To examine relationships between habitat complexity and predator effects, we excluded ants from coffee plants in coffee agroecosystems varying in vegetation complexity. Specifically, we studied the effects of eliminating ants on arthropod assemblages, herbivory, damage by the coffee berry borer and coffee yields in four sites differing in management intensification. We also sampled ant assemblages in each management type to see whether changes in ant assemblages relate to any observed changes in top-down effects. 3Removing ants did not change total arthropod densities, herbivory, coffee berry borer damage or coffee yields. Ants did affect densities of some arthropod orders, but did not affect densities of different feeding groups. The effects of ants on lower trophic levels did not change with coffee management intensity. 4Diversity and activity of ants on experimental plants did not change with coffee intensification, but the ant species composition differed. 5Although variation in habitat complexity may affect trophic cascades, manipulating predatory ants across a range of coffee agroecosystems varying in management intensity did not result in differing effects on arthropod assemblages, herbivory, coffee berry borer attack or coffee yields. Thus, there is no clear pattern that top-down effects of ants in coffee agroecosystems intensify or dampen with decreased habitat complexity. [source]


Influence of native ants on arthropod communities in a vineyard

AGRICULTURAL AND FOREST ENTOMOLOGY, Issue 3 2010
Chee-Seng Chong
1Ants can have a range of effects on arthropods in crops, including suppressing herbivores such as caterpillars. However, ants can also increase hemipteran densities while reducing natural enemy numbers. In vineyard ecosystem, the effects of native ants and their interactions with other arthropods are poorly understood. 2An ant-exclusion experiment was designed to test the impact of native ants on both canopy and ground arthropods concurrently. The potential influence of ants on predation and parasitism of light brown apple moth (LBAM) eggs, a grape pest, was also examined. Adult grapevine scale insects and earwigs under bark were counted after a season of ant-exclusion. 3Among 23 ground ant species collected, six were found to forage in the canopy, with two Iridomyrmex species being the most commonly encountered. 4There was no difference in the abundance of most arthropod orders and feeding groups between ant-excluded and control vines, although ground spiders were more abundant under ant-excluded vines, despite increased ground ant foraging pressure. LBAM egg parasitism and predation were low and probably affected by weather and other arthropods. Ant exclusion did not reduce survival of scale insects, although the distribution and abundance of scale insects were negatively associated with earwigs. 5In conclusion, native ants did not consistently suppress arthropod assemblages, including natural enemies, and they did not promote the survival of scale insects. Interactions among native ant species within a vineyard might minimize their effects on other arthropods, although this needs further study. [source]


An experimental test of the effect of plant functional group diversity on arthropod diversity

OIKOS, Issue 2 2000
Amy J. Symstad
Characteristics used to categorize plant species into functional groups for their effects on ecosystem functioning may also be relevant to higher trophic levels. In addition, plant and consumer diversity should be positively related because more diverse plant communities offer a greater variety of resources for the consumers. Thus, the functional group composition and richness of a plant community may affect the composition and diversity of the herbivores and even higher trophic levels associated with that community. We tested this hypothesis by sampling arthropods with a vacuum sampler (34,531 individuals of 494 species) from an experiment in which we manipulated plant functional group richness and composition. Plant manipulations included all combinations of three functional groups (forbs, C3 graminoids, and C4 graminoids) removed zero, one, or two at a time from grassland plots at Cedar Creek Natural History Area, MN. Although total arthropod species richness was unrelated to plant functional group richness or composition, the species richness of some arthropod orders was affected by plant functional group composition. Two plant characteristics explained most of the effects of plant functional groups on arthropod species richness. Nutritional quality, a characteristic related to ecosystem functioning, and taxonomic diversity, a characteristic not used to designate plant functional groups, seemed to affect arthropod species richness both directly and indirectly. Thus, plant functional groups designated for their effects on ecosystem processes will only be partially relevant to consumer diversity and abundance. [source]