Paw Volume (paw + volume)

Distribution by Scientific Domains


Selected Abstracts


Inflammatory Pain Reduction In Rats By Local Treatment With oATP, A Selective Inhibitor Of P2X7 ATP Receptor

JOURNAL OF THE PERIPHERAL NERVOUS SYSTEM, Issue 1 2001
G Dell'Antonio
Peptide neurotransmitters, as substance P or ATP, are released during inflammatiory processes by the nerve endings of sensory fibers. ATP is also released from the cytoplasm of damaged cells at the site of inflammation. It acts at the level of many P2X subtypes of purinoreceptors. The receptor for extracellular ATP named P2Z/P2X7 is selectively blocked by the periodate oxidized ATP (oATP). We have hypothesized that P2X subunits present on peripheral sensory nerve terminals, able to initiate a nociceptive signal, could be blocked by local treatment with oATP, so inducing pain relief. Male inbred Fisher rats weighing about 250 g were used. Unilateral inflammation into rat hind paw was induced by intraplantar injection of Freund's complete adjuvant (FCA). The following signs of inflammation, from 3 to 48 h after FCA injection, were detected: increased paw volume, increased paw temperature and hyperalgesia. The latter was evaluated using an algesiometric test wich measured the paw pressure threshold (PPT, expressed in g). We treated some rats, bearing paw inflammation by 12 h, with local injection of 56 ,M oATP. We showed a significant reduction of hyperalgesia in treated rats (PPT = 190 ± 2.3 in inflamed paw of oATP treated vs. PPT = 60 ± 1.6 in inflamed paw of untreated rats, at 60 min following oATP innoculation). We showed also that treatment with oATP was more efficient than treatment with diclofenac in reducing local inflammatory pain (PPT expressed as percentage of the maximum possible effect = 60 ± 0.5, at 120 min following intraplantar administration of oATP, vs. 25 ± 1.9 at the same time following intraplantar administration of diclofenac). The use of polyclonal antibody anti P2X7 receptor to perform immunohistochemical analysis of inflamed tissue, showed a reduction of receptor expression at the level of nerve endings in sections obtained from rat paw treated with oATP with respect to sections obtained from untreated rats. Such an effect was independent on the recruitment of immunocytes in inflamed tissue. Our results demonstrate that ATP exerts a key role in the pathophysiology of peripheral inflammation and that oATP may be effective in treating inflammatory pain. [source]


Calotropis procera latex-induced inflammatory hyperalgesia , effect of bradyzide and morphine

AUTONOMIC & AUTACOID PHARMACOLOGY, Issue 3 2007
Vijay L. Kumar
Summary 1,The milky white latex of the plant Calotropis procera induces inflammatory response upon accidental exposure and on local administration that could be effectively ameliorated by antihistaminic and standard anti-inflammatory drugs. 2,The aim of the present study was to evaluate the anti-oedematogenic and analgesic effect of the bradykinin antagonist, bradyzide (BDZ) and the opioidergic analgesic, morphine (Mor) against inflammatory hyperalgesia induced by the dried latex (DL) of C. procera in the rat paw oedema model. 3,An aqueous solution of DL (0.1 ml of 1% solution) was injected into the sub-plantar surface of the rat paw and the paw volume was measured at different time intervals. The inhibitory effect of bradyzide and morphine on oedema formation and hyperalgesic response was compared with that of cyproheptadine (CPH), a potent inhibitor of DL-induced oedema formation. 4,The hyperalgesic response was evaluated by the dorsal flexion pain test, compression test and by observing motility, stair-climbing ability, and the grooming behaviour of the rats. 5,The effect of these drugs was also evaluated against DL-induced writhings in the mouse model. 6,Both bradyzide and morphine inhibited DL-induced oedema formation by 30,40% and CPH was more effective in this regard (81% inhibition). The antihyperalgesic effect of both the drugs was more pronounced than that of CPH. Both bradyzide and morphine markedly inhibited the grooming behaviour and the effect of morphine could be reversed by pretreatment with naloxone. 7,Thus, our study shows that DL-induced oedema formation is effectively inhibited by antihistaminic/antiserotonergic drug and associated hyperalgesia by analgesic drugs. [source]


Optimization of pulsed electromagnetic field therapy for management of arthritis in rats

BIOELECTROMAGNETICS, Issue 6 2005
Venkatachalam Senthil Kumar
Abstract Studies were undertaken to find out the effects of low frequency pulsed electromagnetic field (PEMF) in adjuvant induced arthritis (AIA) in rats, a widely used model for screening potential therapies for rheumatoid arthritis (RA). AIA was induced by an intradermal injection of a suspension of heat killed Mycobacterium tuberculosis (500 ,g/0.1 ml) into the right hind paw of male Wistar rats. This resulted in swelling, loss of body weight, increase in paw volume as well as the activity of lysosomal enzymes viz., acid phosphatase, cathepsin D, and ,-glucuronidase and significant radiological and histological changes. PEMF therapy for arthritis involved optimization of three significant factors, viz., frequency, intensity, and duration; and the waveform used is sinusoidal. The use of factorial design in lieu of conventional method resulted in the development of an ideal combination of these factors. PEMF was applied using a Fransleau,Braunbeck coil system. A magnetic field of 5 Hz,×,4 ,T,×,90 min was found to be optimal in lowering the paw edema volume and decreasing the activity of lysosomal enzymes. Soft tissue swelling was shown to be reduced as evidenced by radiology. Histological studies confirmed reduction in inflammatory cells infiltration, hyperplasia, and hypertrophy of cells lining synovial membrane. PEMF was also shown to have a membrane stabilizing action by significantly inhibiting the rate of release of ,-glucuronidase from lysosomal rich and sub-cellular fractions. The results indicated that PEMF could be developed as a potential therapy in the treatment of arthritis in humans. Bioelectromagnetics 26:431,439, 2005. © 2005 Wiley-Liss, Inc. [source]


Enhancement of the anti-inflammatory and anti-arthritic effects of theophylline by a low dose of a nitric oxide donor or non-specific nitric oxide synthase inhibitor

BRITISH JOURNAL OF PHARMACOLOGY, Issue 7 2009
Adel Gomaa
Background and purpose:, Although there are many new specific phosphodiesterase inhibitors with anti-inflammatory activity, none have yet reached the market because of their low therapeutic efficacy. Our study was aimed to evaluate the anti-inflammatory and anti-arthritic effect of an established phosphodiesterase inhibitor, theophylline, and to investigate the effect of the nitric oxide (NO) donor, sodium nitroprusside (SNP) or NO synthase inhibitor, L-NG -monomethyl arginine (L-NMMA) on its actions. Experimental approach:, The effects of theophylline alone and combined with SNP or L-NMMA on the pathogenesis of adjuvant-induced arthritis in rats were evaluated. Key results:, Prophylactic or therapeutic doses of theophylline significantly ameliorated the pathogenesis of adjuvant arthritis in rats as evidenced by a significant decrease in the arthritis index, hind paws volume, ankle joint diameter, fever, body weight loss and hyperalgesia in a dose-dependent manner. Inflammatory cellular infiltrate in synovium of ankle joint and pannus formation were also markedly inhibited. Interleukin-10 (IL-10) levels were significantly increased in arthritic rats given theophylline alone or in combination with either SNP or L-NMMA. Co-administration of a low dose of SNP or L-NMMA enhanced significantly the anti-inflammatory and anti-arthritic effect of theophylline. In contrast, a high dose of SNP counteracted the anti-inflammatory and anti-arthritic effects of theophylline. Conclusions and Implication:, These findings confirm the anti-inflammatory and anti-arthritic activities of theophylline and suggest a new approach to enhance the anti-inflammatory and anti-arthritic effects of theophylline would be to administer it in combination with a low dose of a NO donor or a non-specific NO synthase inhibitor. [source]