Pacific Halibut (pacific + halibut)

Distribution by Scientific Domains


Selected Abstracts


A NORTHEAST PACIFIC OFFSHORE KILLER WHALE (ORCINUS ORCA) FEEDING ON A PACIFIC HALIBUT (HIPPOGLOSSUS STENOLEPIS)

MARINE MAMMAL SCIENCE, Issue 1 2006
Iain M. Jones
No abstract is available for this article. [source]


Ocean transport paths for the early life history stages of offshore-spawning flatfishes: a case study in the Gulf of Alaska

FISH AND FISHERIES, Issue 1 2008
Kevin M Bailey
Abstract Offshore- and deepwater-spawning flatfish species face the problem of transport of their planktonic stages to shallow juvenile nursery grounds that are often far shoreward in bays or estuaries. We compare life history attributes of four offshore-spawning flatfish species in the Gulf of Alaska: Pacific halibut (Hippoglossus stenolepis), arrowtooth flounder (Atheresthes stomias), rex sole (Glyptocephalus zachirus) and Dover sole (Microstomus pacificus) to examine how their larvae get from a spawning location at the edge or beyond the continental shelf to specific inshore nursery zones. We utilize historical records of survey catches of different life stages to characterize the stage-specific changes in distribution of spawning, planktonic stages and juvenile nursery areas. We infer transport mechanisms based on the shifts in distribution of the life stages and in comparison with local physical oceanography. This comparison provides insight into the different mechanisms marine species may use to solve the common ,problem' of planktonic drift and juvenile settlement. [source]


Sediment preferences and size-specific distribution of young-of-the-year Pacific halibut in an Alaska nursery

JOURNAL OF FISH BIOLOGY, Issue 3 2002
A. W. Stoner
A combination of laboratory experiments and field surveys was used to test the hypotheses that responses to sediments change with fish size and that sediment grain-size is the predominant environmental factor affecting small-scale distribution in young-of-the-year (yoy) Pacific halibut Hippoglossus stenolepis. Laboratory tests showed that the smallest fish (31,40 mm LT) chose fine sediments (muddy and fine sands), fish 51,70 mm had high selectivity (primarily medium sand), and the largest fish (80,150 mm) were not selective although they avoided the largest grain-sizes (pebbles and granules). Sediment preferences were correlated with size-dependent burial capabilities. Beam trawl collections were made over a 6 year period in Kachemak Bay, Alaska, to examine the distribution of yoy Pacific halibut (14,120 mm LT) using small size classes (e.g. 10 mm intervals). Canonical correlation analysis showed that the per cent of sand in the sediment was a highly significant variable for all but one size and date combination. Catch per unit of effort (CPUE) for newly settled fish (<30 mm LT) was highest on very fine sand, fish 41,80 mm were most abundant on fine sand, and the largest yoy fish (81,120 mm) were abundant over a range of sediments from fine sand to mud. Except for the smallest fish, Pacific halibut in the field were associated with sediments somewhat finer than predicted from the laboratory experiments; however, virtually all were captured where they could bury easily. The ability of flatfish to bury and shelter in sediment is related to fish size; consequently, habitat associations shift rapidly during the first year of life. Habitat models for yoy flatfishes should consider size-dependent shifts in capabilities and preferences. [source]


Chemical Characterization of Liver Lipid and Protein from Cold-Water Fish Species

JOURNAL OF FOOD SCIENCE, Issue 6 2006
Peter J. Bechtel
ABSTRACT:, The largest US harvests of marine fish for human consumption are from Alaska waters. Livers from these fish are combined with other fish offal and made into fish meal and oil or discarded. The purpose of this study was to characterize liver lipids and proteins from important commercial species including walleye pollock (WP), pink salmon (PS), Pacific halibut (PH), flat head sole (FS), and spiny head rock fish (RF), and underutilized species including arrow tooth flounder (AF) and big mouth sculpin (BS). Liver lipid content ranged from 50.3% in WP to 3.3% in PS. Protein content ranged from 7.7% in WP to 18.4% in BS. PS livers had the highest content of ,-3 fatty acids at 336 mg/g of oil and AF had the lowest content at 110 mg/g of oil. There were significant differences in the content of 9 amino acids with methionine and lysine values ranging from 2.66% to 3.43% and 7.19% to 9.45% of the total amino acids, respectively. Protein from the cold water marine fish livers was of high quality and the oils contained substantial quantities of ,-3 fatty acids. Fish livers had distinct chemical properties and can be used for the development of unique food ingredients. [source]