Pyrethroids

Distribution by Scientific Domains

Kinds of Pyrethroids

  • synthetic pyrethroid

  • Terms modified by Pyrethroids

  • pyrethroid insecticide
  • pyrethroid resistance

  • Selected Abstracts


    Pyrethroid and DDT cross-resistance in Aedes aegypti is correlated with novel mutations in the voltage-gated sodium channel gene

    MEDICAL AND VETERINARY ENTOMOLOGY, Issue 1 2003
    C. Brengues
    Abstract. Samples of the dengue vector mosquito Aedes aegypti (L.) (Diptera: Culicidae) were collected from 13 localities between 1995 and 1998. Two laboratory strains, Bora (French Polynesia) and AEAE, were both susceptible to DDT and permethrin; all other strains, except Larentuka (Indonesia) and Bouaké (Ivory Coast), contained individual fourth-instar larvae resistant to permethrin. Ten strains were subjected to a range of biochemical assays. Many strains had elevated carboxylesterase activity compared to the Bora strain; this was particularly high in the Indonesian strains Salatiga and Semarang, and in the Guyane strain (Cayenne). Monooxygenase levels were increased in the Salatiga and Paea (Polynesia) strains, and reduced in the two Thai strains (Mae Kaza, Mae Kud) and the Larentuka strain. Glutathione S-transferase activity was elevated in the Guyane strain. All other enzyme profiles were similar to the susceptible strain. The presence of both DDT and pyrethroid resistance in the Semarang, Belem (Brazil) and Long Hoa (Vietnam) strains suggested the presence of a knock-down resistant (kdr)-type resistance mechanism. Part of the S6 hydrophobic segment of domain II of the voltage-gated sodium channel gene was obtained by RT-PCR and sequenced from several insects from all 13 field strains. Four novel mutations were identified. Three strains contained identical amino acid substitutions at two positions, two strains shared a different substitution, and one strain was homozygous for a fourth alteration. The leucine to phenylalanine substitution that confers nerve insensitivity to pyrethroids in a range of other resistant insects was absent. Direct neurophysiological assays on individual larvae from three strains with these mutations demonstrated reduced nerve sensitivity to permethrin or lambda cyhalothrin inhibition compared to the susceptible strains. [source]


    Monitoring pyrethroid resistance in field collected Blattella germanica Linn. (Dictyoptera: Blattellidae) in Indonesia

    ENTOMOLOGICAL RESEARCH, Issue 2 2009
    Intan AHMAD
    Abstract The German cockroach, Blattella germanica, is a major and the most common pest in public areas in Indonesia. Although intensive control measures have been carried out to control the populations of this pest, results have been far from successful, which is believed to be because of its resistance to insecticides. A standard World Health Organization (WHO) glass jar test was carried out to determine the resistance level of this insect to pyrethroid insecticides, the most commonly used insecticides for cockroach control in Indonesia. A susceptible S1 strain collected from Tembagapura Papua was compared with four strains collected from Bandung, West Java: strain S2, from a local restaurant; strain S3, from the Bandung train station; and strains S4 and S5, from two different hotels. All strains showed low resistance to the pyrethroid, except the S5 strain, which had a Resistance Ratio (RR)50 of 95 for permethrin. The addition of piperonyl butoxide (PBO) suggests that the detoxifying enzyme mixed function oxidases (MFO) played an important role in the development of resistance to permethrin in the S5 strain, suggested by the high Synergist Ratio (SR) of 70.4. However, the low level of resistance to cypermethrin was not affected by PBO, suggesting that other mechanisms of pyrethroid resistance are involved. Our study is the first report of German cockroach resistance to permethrin in Indonesia, and the findings can be used in formulating potential strategies for cockroach resistance management. [source]


    Dual enantioselective effect of the insecticide bifenthrin on locomotor behavior and development in embryonic,larval zebrafish

    ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 7 2010
    Meiqing Jin
    Abstract Bifenthrin (BF) is a synthetic pyrethroid that targets the nervous system of insects and may have adverse effects on the behavior and development of nontarget organisms. However, no reports have been issued on the effects of different enantiomers on locomotor behavior for synthetic pyrethroids (SPs) in zebrafish, and whether locomotor activity is associated with the developmental toxicities remains unclear. In this study, enantioselectivity of BF (1S and 1R) on the acute locomotor activity and developmental toxicities of embryonic,larval zebrafish were first evaluated. The results indicated that 1R -BF was more toxic, causing morphological impairments, with a 96-h median effective concentration (EC50) of 226,µg/L for pericardial edema and 145,µg/L for curved body axis. Administration of 20,µg/L of one enantiomer of BF had differential effects on the locomotor activity of zebrafish larvae at 4 d postfertilization (dpf) under alternating light and dark conditions. Larvae treated with 1R -BF were not sensitive to the alteration of light to dark, and the locomotor activities were reduced to a level similar to that observed in light, which otherwise increased rapidly and markedly. However, 1S -BF did not alter the general pattern of zebrafish response to the light or dark compared with the control. The results demonstrated that the differential effects on development might have contributed to the enantioselectivity in the locomotor activity. The consistency of enantioselectivity with insecticidal activity may also indicate a common mode of action. Furthermore, 1R -BF accelerated the spontaneous movement and hatching process, whereas 1S -BF seemed to be inhibitory. The results suggest the need to link behavioral changes to developmental toxicities in order to achieve more comprehensive health risk assessments of chiral pesticides. Environ. Toxicol. Chem. 2010;29:1561,1567. © 2010 SETAC [source]


    Pattern of cross-resistance in pyrethroid-selected populations of Helicoverpa armigera Hübner (Lep., Noctuidae) from India

    JOURNAL OF APPLIED ENTOMOLOGY, Issue 9-10 2004
    T. Ramasubramanian
    Abstract:, In Helicoverpa armigera, withdrawal of selection pressure resulted in a two- to fourfold increase in susceptibility to synthetic pyrethroids and continuous selection enhanced the resistance level by four- to fivefold to the respective pyrethroids at the end of the 14th generation. Populations selected for resistance to one pyrethroid showed positive cross-resistance to all other pyrethroids, but no cross-resistance to endosulfan and thiodicarb. There was a significant increase in mixed-function oxidase activity with advancing generation suggesting its possible role in the positive cross-resistance among the pyrethroids. The induction of carboxyl esterases in pyrethroid-selected populations may have resulted in the activation of indoxacarb, thereby accounting for the observed negative cross-resistance. [source]


    Insecticide resistance spectra and resistance mechanisms in populations of Japanese encephalitis vector mosquitoes, Culex tritaeniorhynchus and Cx. gelidus, in Sri Lanka

    MEDICAL AND VETERINARY ENTOMOLOGY, Issue 4 2000
    S. H. P. P. Karunaratne
    Summary Culex tritaeniorhynchus Giles and Cx. gelidus Theobald (Diptera: Culicidae), both vectors of Japanese encephalitis, were collected in 1984 and 1998 from two disease endemic localities in Sri Lanka: Anaradhapura and Kandy. Using wild-caught adult mosquitoes from light traps, log dosage-probit mortality curves for insecticide bioassays were obtained for three insecticides: malathion (organophosphate), propoxur (carbamate) and permethrin (pyrethroid). LD50 values showed that, in 1998, Cx. tritaeniorhynchus was ,100-fold more resistant to malathion and 10-fold more resistant to propoxur than was Cx. gelidus. This difference was attributed to Cx. tritaeniorhynchus breeding mostly in irrigated rice paddy fields, where it would have been exposed to pesticide selection pressure, whereas Cx. gelidus breeds in other types of aquatic habitats less prone to pesticide applications. Resistance in Cx. tritaeniorhynchus increased between 1984 and 1998, whereas Cx. gelidus remained predominantly susceptible. Propoxur inhibition of acetylcholinesterase (AChE) activity (the target site of organophosphates and carbamates) indicated that in 1998, frequencies of insensitive AChE-based resistance were 9% in Cx. gelidus and 2,23% in Cx. tritaeniorhynchus, whereas in 1984 this resistance mechanism was detected only in 2% of the latter species from Anaradhapura. The AChE inhibition coefficient (ki) with propoxur was 1.86 ± 0.24 × 105 m,1 min,1 for Cx. tritaeniorhynchus from Anaradhapura in 1998. Both species were tested for activity levels of detoxifying glutathione S-trans- ferases (GSTs) and malathion-specific as well as general carboxylesterases. High activities of GSTs and carboxylesterases were detected in Cx. tritaeniorhynchus but not Cx. gelidus. Malathion-specific carboxylesterase was absent from both species. Native polyacrylamide gel electrophoresis resolved two elevated general carboxylesterases, CtrEst,1 and CtrEst,1, from Cx. tritaeniorhynchus and none from Cx. gelidus. CtrEst,1 was the most intensely staining band. Gel inhibition experiments showed that both elevated esterases were inhibited by organophosphates and carbamates but not by pyrethroids. The major elevated esterase CtrEst,1 was partially purified (15-fold) by sequential Q-Sepharose and phenyl Sepharose column chromatography. The bimolecular rate constant (ka) and the deacylation rate constant (k3) for the malaoxon/ enzyme interaction were 9.9 ± 1.1 × 103 m,1 min,1 and 3.5 ± 0.05 × 10,4m,1 min,1, respectively, demonstrating that the role of this enzyme in organophosphorus insecticide resistance is sequestration. [source]


    Safety of pyrethroid-treated mosquito nets

    MEDICAL AND VETERINARY ENTOMOLOGY, Issue 1 2000
    M. Zaim
    Summary The use of insecticide treated nets (ITNs) for personal protection against malaria vector Anopheles mosquitoes (Diptera: Culicidae) has become popular during the past decade. With the precautions outlined in this paper, field use of pyrethroids , at concentrations recommended for treatment of mosquito nets , poses little or no hazard to people treating the nets or to users of the treated nets. With frequent exposure to low concentrations of pyrethroids, the risk of toxicity of any kind is remote. Pyrethroids entering the systemic circulation are rapidly metabolized to much less toxic metabolites. Toxicologically, pyrethroids have a useful characteristic , the production of skin paraesthesia , which gives an early indication of exposure. This reversible symptom of exposure is due to transient stimulation of peripheral sensory nerves and not a toxic effect. In the retail market, for home use, the provision of proper packaging and labelling, with clear instructions on safe and effective use of the product are most important. Because many domestic users of pyrethroid ,home treatment kits' for ITNs may not be fully literate, it is essential that ,instructions for use' should be portrayed via pictograms with supporting text in appropriate local language(s). [source]


    Resistance of Pakistani field populations of spotted bollworm Earias vittella (Lepidoptera: Noctuidae) to pyrethroid, organophosphorus and new chemical insecticides

    PEST MANAGEMENT SCIENCE (FORMERLY: PESTICIDE SCIENCE), Issue 4 2009
    Mushtaq Ahmad
    Abstract BACKGROUND: The spotted bollworm Earias vittella (Fab.) is a serious pest of cotton and okra in Pakistan. Owing to persistent use of insecticides, this pest has developed resistance, especially to pyrethroids. The present studies aimed at determining the extent of resistance to pyrethroid, organophosphorus and new chemical insecticides in Pakistani populations of E. vittella. RESULTS: Field populations of E. vittella were monitored at Multan, Pakistan, from 1999 to 2007 for their resistance against six pyrethroid, four organophosphorus and six new chemical insecticides using a leaf-dip bioassay. Of the pyrethroids, resistance was generally low to zeta-cypermethrin and moderate to high or very high to cypermethrin, deltamethrin, esfenvalerate, bifenthrin and lambda-cyhalothrin. Resistance to organophosphates chlorpyrifos, profenofos, triazophos and phoxim was recorded at very low to low levels. Among new chemicals, E. vittella had no or a very low resistance to spinosad, emamectin benzoate and methoxyfenozide, a very low to low resistance to abamectin, a very low to moderate resistance to indoxacarb and a moderate resistance to chlorfenapyr. CONCLUSION: The results indicate a lack of cross-resistance between pyrethroid and organophosphorus insecticides in E. vittella. Rotation of insecticides showing no, very low or low resistance, but belonging to different insecticide classes with unrelated modes of action, may prevent or mitigate insecticide resistance in E. vittella. Copyright © 2009 Society of Chemical Industry [source]


    Public safety aspects of pyrethroid insecticides used in West Nile virus-carrying mosquito control,

    PEST MANAGEMENT SCIENCE (FORMERLY: PESTICIDE SCIENCE), Issue 7 2007
    Derek W Gammon
    Abstract West Nile virus is becoming increasingly prevalent in the USA, causing fever, encephalitis, meningitis and many fatalities. Spread of the disease is reduced by controlling the mosquito vectors by a variety of means, including the use of pyrethroid insecticides, which are currently under scrutiny for potential carcinogenic effects in humans. Pyrethrins and resmethrin, a pyrethroid, have been shown to cause tumours in rat and mouse models respectively. However, the tumours appear to be caused by liver enzyme induction and hypertrophy rather than genotoxicity, and the results are therefore unlikely to be applicable to humans. Nonetheless, for resmethrin, the US Environmental Protection Agency (EPA) has concluded that there is a likely risk of carcinogenicity in humans, requiring the manufacturers to provide more detailed data to prove that it can be used safely in vector control. Reproductive toxicity of resmethrin in the rat is also discussed. Copyright © 2007 Society of Chemical Industry [source]


    Effect of pretreatment with piperonyl butoxide on pyrethroid efficacy against insecticide-resistant Helicoverpa armigera (Lepidoptera: Noctuidae) and Bemisia tabaci (Sternorrhyncha: Aleyrodidae)

    PEST MANAGEMENT SCIENCE (FORMERLY: PESTICIDE SCIENCE), Issue 2 2006
    Susan J Young
    Abstract Pyrethroid resistance in B-type Bemisia tabaci Gennadius and Australian Helicoverpa armigera Hübner field populations is primarily conferred by esterase isoenzymes which metabolise and sequester pyrethroid insecticides. It has been shown previously that pyrethroid resistance-associated esterases in H. armigera are inhibited by the insecticide synergist piperonyl butoxide (PBO) over a 22-h period. It is demonstrated here that similar inhibition can be obtained against B-type B. tabaci. Small-scale field trials showed excellent levels of pyrethroid control when insects were pretreated with PBO and then dosed with pyrethroid during the time of maximum esterase inhibition. These results demonstrate that PBO can restore pyrethroid efficacy in the field against both B-type B. tabaci and resistant H. armigera. Copyright © 2005 Society of Chemical Industry [source]


    Resistance of Thrips tabaci to pyrethroid and organophosphorus insecticides in Ontario, Canada

    PEST MANAGEMENT SCIENCE (FORMERLY: PESTICIDE SCIENCE), Issue 8 2005
    Jennifer K MacIntyre Allen
    Abstract Onion thrips, Thrips tabaci Lindeman, were collected from commercial onion fields in 2001, 2002 and 2003 to assess resistance to lambda-cyhalothrin, deltamethrin and diazinon. In 2001, six of eight adult populations were resistant to lambda-cyhalothrin, with resistance ratios (RR) ranging from 2 to 13.1 and four of these were also resistant to deltamethrin, with RR ranging from 19.3 to 120. Three of four adult populations were resistant to diazinon with RR ranging from 2.5 to 165.8. In 2002, four of seven nymphal populations and three of six adult populations were resistant to deltamethrin, with RR ranging from 4.3 to 72.5 and 9.4 to 839.2, respectively. Only one of six nymphal populations and one of five adult populations were resistant to diazinon, with RR of 5.6 and 2.3, respectively. In 2003 diagnostic dose bioassays, 15 of 16 onion thrips populations were resistant to lambda-cyhalothrin and all were resistant to deltamethrin. Eight of the 16 were resistant to diazinon. These results indicate that insecticide resistance is widespread in onion thrips in commercial onion fields in Ontario. Copyright © 2005 Society of Chemical Industry [source]


    Insecticide-resistant pollen beetles (Meligethes aeneus F) found in Danish oilseed rape (Brassica napus L) fields

    PEST MANAGEMENT SCIENCE (FORMERLY: PESTICIDE SCIENCE), Issue 9 2003
    Lars Monrad Hansen
    Abstract The pollen beetle is the most important pest in Danish oilseed rape fields. In 2001, we screened a broad range of pollen beetle populations for pyrethroid and dimethoate resistance. A standard dip-test was used to test insecticide resistance in 18 populations collected from oilseed winter and spring rape fields. The beetles were treated with four different insecticides: the pyrethroids tau-fluvalinate, lambda-cyhalothrin and esfenvalerate, and the organophosphate dimethoate. The results show that up to 99% of the pollen beetles survived Danish standard doses of pyrethroids and up to 36% of the beetles survived standard doses of dimethoate. Copyright © 2003 Society of Chemical Industry [source]


    Effect of the combined treatment of insecticides and an attractant for the control of Phloeotribus scarabaeoides, a pest of Olea europea

    PEST MANAGEMENT SCIENCE (FORMERLY: PESTICIDE SCIENCE), Issue 3 2003
    Estefanía Rodríguez
    Abstract Different insecticides have been tested for the control of the olive bark beetle, Phloeotribus scarabaeoides Bern. This scolytid can be managed at two points in its biological cycle: in pruned logs, where it excavates reproduction galleries, or in living trees, after emergence from the logs, where it digs feeding galleries. In mortality laboratory bioassays, the efficiency of organophosphorus insecticides has been ranked as follows: chlorpyrifos,+,dimethoate,<,formothion,<,methidathion. Formothion and methidathion, the two most efficient, were sprayed on olive logs together with a pyrethroid insecticide, deltamethrin, and a formulation which combined an organophosphorus (fenitrothion) and a pyrethroid (cypermethrin) insecticide. Deltamethrin inhibited the excavation of new reproduction galleries and induced a repellent effect on the olive pest. In contrast, none of the organophosphorus insecticides or the combination, fenitrothion,+,cypermethrin, were able to control the olive bark beetle. In olive trees, deltamethrin controlled this olive pest without showing the repellent effect observed for logs. Ethylene, a plant hormone, has been reported as an attractant for the olive bark beetle. The use of dispensers which released ethylene increased the number of P scarabaeoides approaching the treated olive trees, thus favouring its use in a lure-and-trap control system. © 2003 Society of Chemical Industry [source]


    Sub-lethal responses of the large pine weevil, Hylobius abietis, to the pyrethroid insecticide lambda-cyhalothrin

    PHYSIOLOGICAL ENTOMOLOGY, Issue 4 2006
    D. ROSE
    Abstract The response of the large pine weevil (Hylobius abietis) to the pesticide lambda-cyhalothrin, a pyrethroid, is investigated. Both behavioural (feeding preferences) and nutritional and physiological (lipid content) responses are recorded. Hylobius abietis shows both a significant avoidance of pesticide-treated food sources and a decrease in lipid content after exposure, but a full recovery after feeding on untreated food. It is proposed that the mechanism for the pesticide avoidance and altered lipid levels is due to an anti-feedant effect of the pesticide. Implications for pest management programmes are described. [source]


    Biochemical mechanisms of insecticide resistance in the diamondback moth (DBM), Plutella xylostella L. (Lepidopterata: Yponomeutidae), in the Sydney region, Australia

    AUSTRALIAN JOURNAL OF ENTOMOLOGY, Issue 4 2009
    Vincent Y Eziah
    Abstract Following the detection of resistant diamondback moth (DBM) populations to synthetic pyrethroid, organophosphorus and indoxacarb insecticides in the Sydney Basin, a study of the major biochemical mechanisms was conducted to determine the type of resistance in these populations. The activity of cytochrome P450 monooxygenases increased two- to sixfold when compared with the susceptible strain. Up to a 1.9-fold increase in esterase activity in resistant strains compared with the susceptible strain was observed. In vitro inhibition studies showed that profenofos, methamidophos and chlorpyrifos strongly inhibited the esterases while permethrin and esfenvalerate resulted in less than 30% inhibition. Qualitative analysis of the esterases using native polyacrylamide gel electrophoresis showed four bands in both the susceptible and resistant individuals with more intense staining in the resistant individuals. The development of these bands was inhibited by methamidophos and chlorpyrifos pretreatment of the protein extract while permethrin and esfenvalerate did not exhibit this effect. Glutathione S-transferase (GST) activity was significantly higher in two field populations compared with the remaining populations. Overall, the study showed that the mechanisms of insecticide resistance in the DBM populations in the area studied were due to cytochrome P450 monooxygenases, esterase and GSTs, and possibly other non-metabolic mechanisms that were not investigated in the present study. [source]


    Speed of action and in vitro efficacy of spinosad against sheep body lice, Bovicola ovis (Schrank) (Phthiraptera: Trichodectidae), resistant to pyrethroid, organophosphate or insect growth regulator insecticides

    AUSTRALIAN JOURNAL OF ENTOMOLOGY, Issue 3 2008
    Garry Levot
    Abstract, Results of laboratory bioassays indicated that spinosad was equally effective against sheep lice populations that were susceptible to insecticides or resistant to pyrethroid, organophosphorus or insect growth regulator (IGR) insecticides. Spinosad had similar toxicity against susceptible strains of lice to that previously reported for diazinon, but lower toxicity than cypermethrin. Lethal concentrations of spinosad and diazinon caused knock down of lice within 6 h of exposure and death within 24 h. Prior to the current phasing out of diazinon as a sheep dip, most wool producers, needing to control pyrethroid- or IGR-resistant lice infestations in short-wool, would have chosen to use diazinon. Our results suggest that spinosad is an effective alternative for treatment of lice resistant to other chemical groups. [source]


    Treatment of head lice

    DERMATOLOGIC THERAPY, Issue 4 2009
    Stephanie A. Diamantis
    ABSTRACT Pediculosis capitis, or head lice, is a common infestation among children worldwide. Multiple therapies exist for the treatment of this condition, including topical pediculicides and oral medications. When used in combination with environmental decontamination, these drugs can be very effective in eradicating head lice infestation without significant adverse events. The present study discusses the use of available over-the-counter and prescription treatments, including pyrethroids and permethrin, lindane, malathion, ivermectin, and trimethoprim-sulfamethoxazole, in the treatment of head lice. [source]


    Glutathione S -transferase detoxification as a potential pyrethroid resistance mechanism in the maize weevil, Sitophilus zeamais

    ENTOMOLOGIA EXPERIMENTALIS ET APPLICATA, Issue 1 2003
    Daniel B. Fragoso
    Abstract Insecticide resistance patterns among 16 Brazilian populations of the maize weevil, Sitophilus zeamais Motschulsky (Coleoptera: Curculionidae), were recognized by surveying resistance to three organophosphates (chlorpyrifos-methyl, malathion, and pirimiphos-methyl) and three pyrethroids (cypermethrin, deltamethrin, and permethrin). Two population clusters were obtained: one with three populations (Bragança Paulista, Cristalina, and Nova Andradina) showing low frequency of cypermethrin resistance (13,36%) and negligible frequency of deltamethrin resistance (2,9%); and another with six populations (Campos dos Goytacazes, Ivinhema, Patos de Minas, Penápolis, Uberlândia, and Venda Nova) showing low to negligible levels of pyrethroid resistance (0,23%). The remaining seven populations, including a susceptible, and a DDT- and pyrethroid-resistant reference populations (Sete Lagoas and Jacarezinho, respectively), were significantly different from each other and from the two recognized clusters. In contrast with pyrethroid resistance, organophosphate resistance was negligible except for chlorpyrifos-methyl in two populations (Fátima do Sul and Penápolis). There was no correlation between geographic distance and the Mahalanobis distance estimated from the resistance pattern ordination of the populations by canonical variate analysis, suggesting local selection and/or broad dispersal of resistant populations by grain trade. The results of biochemical in vitro studies measuring the activity of detoxification enzymes (esterases and glutathion S -transferases) in conjunction with canonical correlation analysis suggest a major involvement of enhanced conjugation by glutathione S -transferases (> 2-fold increase) in pyrethroid resistance and, in the case of cypermethrin resistance, enhanced phosphotriesterase activity. [source]


    DNA damage in Pakistani pesticide-manufacturing workers assayed using the Comet assay

    ENVIRONMENTAL AND MOLECULAR MUTAGENESIS, Issue 8 2006
    Javed A. Bhalli
    Abstract The production and use of chemical pesticides has increased in recent years. Although the increased use of pesticides may benefit agriculture, they are also the potential source of environmental pollution, and exposure to pesticides can have negative consequences for human health. In the present study, we have assessed DNA damage in blood leukocytes from 29 Pakistani pesticide-factory workers and 35 controls of similar age and smoking history. The workers were exposed to various mixtures of organophosphates, carbamates, and pyrethroids. DNA damage was measured with the single cell gel electrophoresis (SCGE) assay or Comet assay, using the mean comet tail length (,m) as the DNA damage metric. Exposed workers had significantly longer comet tail lengths than the controls (mean ± SD 19.98 ± 2.87 vs. 7.38 ± 1.48, P < 0.001). Of the possible confounding factors, smokers had significantly longer mean comet tail lengths than nonsmokers and exsmokers for both the workers (21.48 ± 2.58 vs.18.37 ± 2.28, P < 0.001) and the controls (8.86 ± 0.56 vs. 6.79 ± 1.31, P < 0.001), while age had a minimal effect on DNA damage (P > 0.05 and P < 0.05 for workers and controls, respectively). The results of this study indicate that occupational exposure to pesticides causes DNA damage. Environ. Mol. Mutagen., 2006. © 2006 Wiley-Liss, Inc. [source]


    Synergist efficacy of piperonyl butoxide with deltamethrin as pyrethroid insecticide on Culex tritaeniorhynchus (Diptera: Culicidae) and other mosquitoe species

    ENVIRONMENTAL TOXICOLOGY, Issue 1 2009
    M. R. Fakoorziba
    Abstract Continuous and indiscriminate use of pesticides, especially in tropical countries for public health or agriculture purpose, has led many vector populations to become resistant to organochlorides, organophosphates, and even to carbamates and pyrethroids. Development of resistance by a vector population has been one of the reasons for the failure of the control measures in many countries. This investigation demonstrates the efficacy of piperonyl-butoxide (PBO) with deltamethrin, as pyrethroid insecticide, against the field-collected mosquitoe larvae of five species, Aedes aegypti, Anopheles culicifacies, An. stephensi, An. vagus, and Culex quinqufasciatus, and two morphological variants of Cx. tritaeniorhynchus (type A from grand pools of Mysore city and type B from rice fields of Mandya district). For testing the synergistic effect of PBO, stock solutions of deltamethrin and PBO were mixed in 1:6 ratio. The synergistic ratio and the percent suppression in deltamethrin tolerance were calculated by using LC50 values. From the results, it is clear that, PBO is an effective synergist with deltamethrin against all of species undertaken in this investigation. So, it is suggested that PBO is a good synergist in this area for decreasing the use of pesticides in environment in vector control. © 2008 Wiley Periodicals, Inc. Environ Toxicol, 2009. [source]


    Dual enantioselective effect of the insecticide bifenthrin on locomotor behavior and development in embryonic,larval zebrafish

    ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 7 2010
    Meiqing Jin
    Abstract Bifenthrin (BF) is a synthetic pyrethroid that targets the nervous system of insects and may have adverse effects on the behavior and development of nontarget organisms. However, no reports have been issued on the effects of different enantiomers on locomotor behavior for synthetic pyrethroids (SPs) in zebrafish, and whether locomotor activity is associated with the developmental toxicities remains unclear. In this study, enantioselectivity of BF (1S and 1R) on the acute locomotor activity and developmental toxicities of embryonic,larval zebrafish were first evaluated. The results indicated that 1R -BF was more toxic, causing morphological impairments, with a 96-h median effective concentration (EC50) of 226,µg/L for pericardial edema and 145,µg/L for curved body axis. Administration of 20,µg/L of one enantiomer of BF had differential effects on the locomotor activity of zebrafish larvae at 4 d postfertilization (dpf) under alternating light and dark conditions. Larvae treated with 1R -BF were not sensitive to the alteration of light to dark, and the locomotor activities were reduced to a level similar to that observed in light, which otherwise increased rapidly and markedly. However, 1S -BF did not alter the general pattern of zebrafish response to the light or dark compared with the control. The results demonstrated that the differential effects on development might have contributed to the enantioselectivity in the locomotor activity. The consistency of enantioselectivity with insecticidal activity may also indicate a common mode of action. Furthermore, 1R -BF accelerated the spontaneous movement and hatching process, whereas 1S -BF seemed to be inhibitory. The results suggest the need to link behavioral changes to developmental toxicities in order to achieve more comprehensive health risk assessments of chiral pesticides. Environ. Toxicol. Chem. 2010;29:1561,1567. © 2010 SETAC [source]


    Multiple stressor effects of methoprene, permethrin, and salinity on limb regeneration and molting in the mud fiddler crab (UCA pugnax)

    ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 11 2009
    Todd A. Stueckle
    Abstract Exposure to multiple stressors from natural and anthropogenic sources poses risk to sensitive crustacean growth and developmental processes. Applications of synthetic pyrethroids and insect growth regulators near shallow coastal waters may result in harmful mixture effects depending on the salinity regime. The potential for nonadditive effects of a permethrin (0.01,2 ,g/L), methoprene (0.03,10 ,g/L), and salinity (10,40 ppt) exposure on male and female Uca pugnax limb regeneration and molting processes was evaluated by employing a central composite rotatable design with multifactorial regression. Crabs underwent single-limb autotomy followed by a molting challenge under 1 of 16 different mixture treatments. During the exposure (21,66 d), individual limb growth, major molt stage duration, abnormal limb regeneration, and respiration were monitored. At 6 d postmolt, changes in body mass, carapace width, and body condition factor were evaluated. Dorsal carapace tissue was collected, and protein and chitin were extracted to determine the composition of newly synthesized exoskeleton. The present results suggest chronic, low-dose exposures to multiple pesticide stressors cause less-than-additive effects on U. pugnax growth processes. Under increasing concentrations of methoprene and permethrin, males had more protein in their exoskeletons and less gain in body mass, carapace width, and body condition compared to females. Females exhibited less gain in carapace width than controls in response to methoprene and permethrin. Females also displayed elevated respiration rates at all stages of molt, suggesting a high metabolic rate. Divergent growth and fitness between the sexes over the long term could influence crustacean population resilience. [source]


    Whole sediment toxicity identification evaluation tools for pyrethroid insecticides: III.

    ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 1 2009
    Temperature manipulation
    Abstract Since the toxicity of pyrethroid insecticides is known to increase at low temperatures, the use of temperature manipulation was explored as a whole-sediment toxicity identification evaluation (TIE) tool to help identify sediment samples in which pyrethroid insecticides are responsible for observed toxicity. The amphipod Hyalella azteca is commonly used for toxicity testing of sediments at a 23°C test temperature. However, a temperature reduction to 18°C doubled the toxicity of pyrethroids, and a further reduction to 13°C tripled their toxicity. A similar response, though less dramatic, was found for 1,1-bis(p -chlorophenyl)-2,2,2-trichloroethane (DDT), and dissimilar temperature responses were seen for cadmium and the insecticide chlorpyrifos. Tests with field-collected sediments containing pyrethroids and/or chlorpyrifos showed the expected thermal dependency in nearly all instances. The inverse relationship between temperature and toxicity provides a simple approach to help establish when pyrethroids are the principal toxicant in a sediment sample that could be used as a supplemental tool in concert with chemical analysis or other TIE manipulations. The phenomenon appears to be, in part, a consequence of a reduced ability to biotransform the toxic parent compound at cooler temperatures. The strong dependence of pyrethroid toxicity on temperature has important ramifications for predicting their environmental effects, and the standard test temperature of 23°C dramatically underestimates risk to resident fauna during the cooler months. [source]


    Effects of dietary esfenvalerate exposures on three aquatic insect species representing different functional feeding groups

    ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 8 2008
    Katherine R. Palmquist
    Abstract Given the chemical properties of synthetic pyrethroids, it is probable that compounds, including esfenvalerate, that enter surface waters may become incorporated into aquatic insect food sources. We examined the effect of dietary esfenvalerate uptake in aquatic insects representing different functional feeding groups. We used three field-collected aquatic insect species: A grazing scraper, Cinygmula reticulata McDunnough (Ephemeroptera: Heptageniidae); an omnivorous filter feeder, Brachycentrus americanus Banks (Trichoptera: Brachycentridae); and a predator, Hesperoperla pacifica Banks (Plecoptera: Perlidae). Laboratory-cultured algae were preexposed for 24 h to esfenvalerate concentrations of 0, 0.025, 0.05, and 0.1 ,g/L and provided to two C. reticulata age classes (small and final-instar nymphs). Reduction in small nymph growth was observed following three weeks of feeding on algae exposed to 0.05 and 0.1 ,g/L of esfenvalerate, and the highest dietary exposure reduced egg production in final-instar nymphs. The diet for B. americanus and H. pacifica consisted of dead third-instar Chironomus tentans larvae preexposed for 24 h to esfenvalerate concentrations ranging between 0.1 and 1.0 ,g/L. Consumption of larvae exposed to 0.5 to 1.0 ,g/L of esfenvalerate caused case abandonment and mortality in B. americanus caddisfly larvae. Although H. pacifica nymphs readily consumed esfenvalerate-exposed larvae, no adverse effects were observed during the present study. Furthermore, no evidence of esfenvalerate-induced feeding deterrence was found in any of the species tested, suggesting that aquatic insects may not be able to distinguish between pyrethroid-contaminated and uncontaminated food sources. These findings indicate that feeding deterrence is not a factor in regulating aquatic insect dietary exposures to synthetic pyrethroids. [source]


    Estrogenic activity of lambda-cyhalothrin in the MCF-7 human breast carcinoma cell line,

    ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 5 2008
    Meirong Zhao
    Abstract Synthetic pyrethroids are widely used in both agricultural and urban environments for insect control. Lambda-cyhalothrin (LCT) is one of the most common pyrethroids and is used mainly for controlling mosquitoes, fleas, cockroaches, flies, and ants around households. Previous studies have addressed the environmental behaviors and acute toxicities of LCT, but little is known about its chronic toxicity, such as estrogen-like activity. In the present study, the estrogenic potential of LCT was evaluated using the MCF-7 human breast carcinoma cell line. The in vitro E-screen assay showed that 10,7 M LCT could significantly promote MCF-7 cell proliferation, with a relative proliferative effect ratio of 45%. The cell proliferation induced by LCT could be blocked completely, however, by the addition of 10,9 M of the estrogen receptor (ER)-antagonist ICI 182,780. The semiquantitative reverse transcription-polymerase chain reaction (RT-PCR) results showed that the Trefoil factor 1 (pS2) and progesterone receptor gene expression were up-regulated by 10,7 M LCT for 2- and 1.5-fold, respectively. On the other hand, RT-PCR, Western blot analysis, and immunofluorescent assay demonstrated that LCT significantly repressed the mRNA and protein expression levels of ER, and ER,. These observations indicate that LCT possesses estrogenic properties and may function as a xenoestrogen, likely via a mechanism similar to that of 17,-estradiol. The endocrine-disruption potential of LCT should be considered when assessing the safety of this compound in sensitive environmental compartments. [source]


    Inhibition of aquatic toxicity of pyrethroid insecticides by suspended sediment

    ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 7 2006
    Weichun Yang
    Abstract The use of pyrethroid insecticides is increasing in both agricultural and urban environments. Although pyrethroids display very high acute toxicities to water column organisms in laboratory tests, environmental water samples typically contain suspended sediment (SS) that can reduce the freely dissolved concentration of pyrethroids, hence their bioavailability. Consequently, phase distribution could play an important role in pyrethroid aquatic toxicology. In this study, we evaluated the effect of SS on the acute toxicity of four widely used pyrethroid insecticides to Ceriodaphnia dubia. In all assays, median lethal concentrations (LC50s) consistently increased with increasing SS, demonstrating the pronounced inhibitory effects of SS on pyrethroid toxicity. The LC50s in the 200 mg/L SS solutions were 2.5 to 13 times greater than those measured in sediment-free controls. Solid-phase microextraction (SPME) was used to determine the apparent distribution coefficient Kd for the pyrethroids in the water samples. Under the assumption that only the freely dissolved fraction is bioavailable, the measured Kd was used to predict C. dubia LC50s in the water samples. The predicted LC50s were within a factor of two of the measured values for 95% of the treatments. Results from this study suggest that the inhibitory effect of SS can be highly significant and must be considered in estimating exposures to pyrethroids in aquatic systems. The SPME methodology could be used effectively to measure bioavailable concentration and to predict the actual ecotoxicologic effects of pyrethroids. [source]


    Vegetated agricultural drainage ditches for the mitigation of pyrethroid-associated runoff

    ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 9 2005
    Erin R. Bennett
    Abstract Drainage ditches are indispensable components of the agricultural production landscape. A benefit of these ditches is contaminant mitigation of agricultural storm runoff. This study determined bifenthrin and lambda-cyhalothrin (two pyrethroid insecticides) partitioning and retention in ditch water, sediment, and plant material as well as estimated necessary ditch length required for effective mitigation. A controlled-release runoff simulation was conducted on a 650-m vegetated drainage ditch in the Mississippi Delta, USA. Bifenthrin and lambda-cyhalothrin were released into the ditch in a water-sediment slurry. Samples of water, sediment, and plants were collected and analyzed for pyrethroid concentrations. Three hours following runoff initiation, inlet bifenthrin and lambda-cyhalothrin water concentrations ranged from 666 and 374 ,g/L, respectively, to 7.24 and 5.23 ,g/L at 200 m downstream. No chemical residues were detected at the 400-m sampling site. A similar trend was observed throughout the first 7 d of the study where water concentrations were elevated at the front end of the ditch (0,25 m) and greatly reduced by the 400-m sampling site. Regression formulas predicted that bifenthrin and lambda-cyhalothrin concentrations in ditch water were reduced to 0.1% of the initial value within 280 m. Mass balance calculations determined that ditch plants were the major sink and/or sorption site responsible for the rapid aqueous pyrethroid dissipation. By incorporating vegetated drainage ditches into a watershed management program, agriculture can continue to decrease potential non-point source threats to downstream aquatic receiving systems. Overall results of this study illustrate that aquatic macrophytes play an important role in the retention and distribution of pyrethroids in vegetated agricultural drainage ditches. [source]


    Isomer selectivity in aquatic toxicity and biodegradation of bifenthrin and permethrin

    ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 8 2005
    Weiping Liu
    Abstract Synthetic pyrethroids are widely used insecticides, and contamination of surface aquatic ecosystems by pyrethroid residues from runoff is of particular concern because of potential aquatic toxicity. Pyrethroids also are chiral compounds consisting of multiple stereoisomers. In the present study, we evaluated the diastereomer and enantiomer selectivity of cis -bifenthrin (cis -BF) and permethrin (PM) in their aquatic toxicity and biodegradation. The 1R-cis enantiomer was the only enantiomer in cis -BF showing toxicity against Ceriodaphnia dubia. Incubation with pesticide-degrading bacteria showed that the trans diastereomer of PM was selectively degraded over the cis diastereomer, whereas the 1S-cis enantiomer in cis -BF or cis -PM was preferentially degraded over the corresponding 1R-cis enantiomer. The enantioselectivity was significantly greater for cis -PM than for cis -BF and also varied among different strains of bacteria. Isomer selectivity may be a common phenomenon in both aquatic toxicity and biodegradation of pyrethroids, and this should be considered when assessing ecotoxicological risks of these compounds in sensitive ecosystems. [source]


    Development of toxicity identification evaluation procedures for pyrethroid detection using esterase activity

    ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 11 2004
    Craig E. Wheelock
    Abstract Recent agrochemical usage patterns suggest that the use of organophosphate (OP) pesticides will decrease, resulting in a concomitant increase in pyrethroid usage. Pyrethroids are known for their potential toxicity to aquatic invertebrates and many fish species. Current toxicity identification evaluation (TIE) techniques are able to detect OPs, but have not been optimized for pyrethroids. Organophosphate identification methods depend upon the use of piperonyl butoxide (PBO) to identify OP-induced toxicity. However, the use of PBO in TIE assays will be confounded by the co-occurrence of OPs and pyrethroids in receiving waters. It is necessary, therefore, to develop new TIE procedures for pyrethroids. This study evaluated the use of a pyrethroid-specific antibody, PBO, and carboxylesterase activity to identify pyrethroid toxicity in aquatic toxicity testing with Ceriodaphnia dubia. The antibody caused significant mortality to the C. dubia. Piperonyl butoxide synergized pyrethroid-associated toxicity, but this effect may be difficult to interpret in the presence of OPs and pyrethroids. Carboxylesterase activity removed pyrethroid-associated toxicity in a dose-dependent manner and did not compromise OP toxicity, suggesting that carboxylesterase treatment will not interfere with TIE OP detection methods. These results indicate that the addition of carboxylesterase to TIE procedures can be used to detect pyrethroids in aquatic samples. [source]


    Microbial transformation of pyrethroid insecticides in aqueous and sediment phases

    ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 1 2004
    Sangjin Lee
    Abstract Recent studies showed that synthetic pyrethroids(SPs)can move via surface runoff into aquatic systems. Fifty-six of SP-degrading bacteria strains were isolated from contaminated sediments, of which six were evaluated for their ability to transform bifenthrin and permethrin in the aqueous phase and bifenthrin in the sediment phase. In the aqueous phase, bifenthrin was rapidly degraded by strains of Stenotrophomonas acidaminiphila, and the half-life (t1/2) was reduced from >700 h to 30 to 131 h. Permethrin isomers were degraded by Aeromonas sobria, Erwinia carotovora, and Yersinia frederiksenii. Similar to bifenthrin, the t1/2 of cis - and trans -permethrin was reduced by approximately 10-fold after bacteria inoculation. However, bifenthrin degradation by S. acidaminiphila was significantly inhibited in the presence of sediment, and the effect was likely caused by strong adsorption to the solid phase. Bifenthrin t1/2 was 343 to 466 h for a field sediment, and increased to 980 to 1200 h for a creek sediment. Bifenthrin degradation in the inoculated slurry treatments was not greatly enhanced when compared with the noninoculated system. Therefore, although SP-degrading bacteria may be widespread in aquatic systems, adsorption to sediment could render SPs unavailable to the degraders, thus prolonging their persistence. [source]


    Phase distribution of synthetic pyrethroids in runoff and stream water

    ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 1 2004
    Weiping Liu
    Abstract Synthetic pyrethroids (SPs) are a group of hydrophobic compounds with significant aquatic toxicity. Their strong affinity to suspended solids and humic materials suggests that SPs in natural surface water are distributed in solid-adsorbed, dissolved organic matter (DOM)-adsorbed, and freely dissolved phases. The freely dissolved phase is of particular importance because of its mobility and bioavailability. In the present study, we used solid-phase microextraction to detect the freely dissolved phase, and we evaluated the phase distribution of bifenthrin and permethrin in stream and runoff waters. In stream water, most SPs were associated with the suspended solids and, to a lesser extent, with DOM. The freely dissolved phase contributed only 0.4% to 1.0%. In runoff effluents, the freely dissolved concentration was 10% to 27% of the overall concentration. The predominant partitioning into the adsorbed phases implies that the toxicity of SPs in surface water is reduced because of decreased bioavailability. This also suggests that monitoring protocols that do not selectively define the freely dissolved phase can lead to significant overestimation of toxicity or water-quality impacts by SPs. [source]