PKC Isozymes (pkc + isozyme)

Distribution by Scientific Domains


Selected Abstracts


Subcellular redistribution of protein kinase C isozymes is associated with rat liver cirrhotic changes induced by carbon tetrachloride or thioacetamide

JOURNAL OF GASTROENTEROLOGY AND HEPATOLOGY, Issue 1 2001
Da-Hee Jeong
Abstract Background and Aims: Protein kinase C (PKC) plays a key role in the alteration of signal transduction in the liver, which may contribute to the development of liver cirrhosis. The aim of the present study was to examine the subcellular redistribution of PKC isozymes in rat liver cirrhosis, which is induced by two different cirrhotic chemical agents, carbon tetrachloride (CCl4) and thioacetamide (TAA). Methods and Results: Thioacetamide and CCl4 were administered to rats for 8 and 30 weeks, respectively before rats were killed and autopsies performed at 9, 20 and 30 weeks later. The TAA induced a fibrotic pattern in the liver that differed from that produced by CCl4, notably in the formation of fibrous connective tissue and the proliferation of bile ductule cells. Cholangiofibrosis and clear-cell foci were also observed in TAA-treated rats at 30 weeks. Histological examination revealed that severe cirrhotic changes were present 9 weeks after the commencement of CCl4 treatment and 30 weeks after TAA treatment. Discussion: When the subcellular redistribution of PKC isozymes (PKC,, -,1, -,, and -,) was examined, all the PKC isozymes in CCl4 -treated rats were found to be translocated to the membrane fraction, which may mean PKC activation, and then downregulated by proteolytic degradation after 9 weeks of treatment, which coincided with peak cirrhotic changes. All rats treated with CCl4 recovered to the control level after 20 weeks of treatment. In the case of TAA-treated rats, PKC isozymes were translocated to the particulate fraction of the liver after 9 weeks of treatment and this persisted in most of the rats for the duration of the experiment. Conclusions: From these results, it would appear that PKC translocation preceded morphologic changes, and that an altered subcellular distribution of the PKC isozyme may be associated with the response to liver damage and carcinogenesis. [source]


Toward the development of new medicinal leads with selectivity for protein kinase C isozymes

THE CHEMICAL RECORD, Issue 4 2005
Kazuhiro Irie
Abstract Tumor promoters such as phorbol esters bind strongly to protein kinase C (PKC) isozymes to induce their activation. Since each PKC isozyme is involved in diverse biological events in addition to tumor promotion, the isozymes serve as promising therapeutic targets. Tumor promoters bind to the C1A and/or C1B domain of conventional (,, ,I, ,II, and ,) and novel PKC isozymes (,, ,, ,, and ,). As these C1 domains play differential roles in PKC activation and their translocation in cells, the development of agents with binding selectivity for individual C1 domains is a pressing need. For this purpose, we established a synthetic C1 peptide library of all PKC isozymes. The library enabled us to identify indolactam-V (1) as a promising lead compound. Our diverse structure,activity studies on 1 indicated that the position of the hydrophobic substituent on the indole ring dominates the PKC isozyme- and C1 domain-selective binding rather than conformation of the nine-membered lactam. Moreover, we suggested that the indole ring of 1 could be involved in the CH/, interaction with Pro-11 of the C1B domain of PKC,. This invaluable information will lead to the structural optimization of the PKC, ligand as exemplified by the design and synthesis of naphtholactam-V8 (21). © 2005 The Japan Chemical Journal Forum and Wiley Periodicals, Inc. Chem Rec 5: 185,195; 2005: Published online in Wiley InterScience (www.interscience.wiley.com) DOI 10.1002/tcr.20044 [source]


Reduced operant ethanol self-administration and in vivo mesolimbic dopamine responses to ethanol inPKC,-deficient mice

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 11 2000
M. Foster Olive
Abstract There is increasing evidence that individual protein kinase C (PKC) isozymes mediate specific effects of ethanol on the nervous system. In addition, multiple lines of evidence suggest that the mesoaccumbens dopamine reward system is critically involved in the rewarding and reinforcing effects of ethanol. Yet little is known about the role of individual PKC isozymes in ethanol reinforcement processes or in regulation of mesolimbic systems. In this study, we report that mice lacking the epsilon isoform of PKC (PKC,) show reduced operant ethanol self-administration and an absence of ethanol-induced increase in extracellular dopamine levels in the nucleus accumbens. PKC, null mice exhibited a 53% decrease in alcohol-reinforced operant responses under basal conditions, as well as following ethanol deprivation. Behavioural analysis revealed that while both genotypes had the same number of drinking bouts following deprivation, PKC, null mice demonstrated a 61% reduction in number of ethanol reinforcers per bout and a 57% reduction in ethanol-reinforced response rate. In vivo microdialysis experiments showed that, in contrast to wild-type mice, PKC, null mice exhibited no change in extracellular levels of dopamine in the nucleus accumbens following acute administration of ethanol (1 and 2 g/kg i.p.), while mesolimbic dopamine responses to cocaine (20 mg/kg i.p.) or high potassium (100 m m) in these mice were comparable with that of wild-types. These data provide further evidence that increases in extracellular mesolimbic dopamine levels contribute to the reinforcing effects of ethanol, and indicate that pharmacological agents inhibiting PKC, may be useful in the treatment of alcohol dependence. [source]


Spatiotemporal dynamics of lipid signaling: Protein kinase C as a paradigm

IUBMB LIFE, Issue 12 2008
Lisa L. Gallegos
Abstract The lipid second messenger diacylglycerol (DAG) controls the rate, amplitude, duration, and location of protein kinase C (PKC) activity in the cell. There are three classes of PKC isozymes and, of these, the conventional and novel isozymes are acutely controlled by DAG. The kinetics of DAG production at various intracellular membranes, the intrinsic affinity of specific isoforms for DAG-containing membranes, the coordinated use of additional membrane-binding modules, the intramolecular regulation of DAG sensitivity, and the competition from other DAG-responsive proteins together result in a unique, context-dependent activation signature for each isoform. This review focuses on the spatiotemporal dynamics of PKC activation and how it is controlled by lipid second messengers. © 2008 IUBMB IUBMB Life, 60(12): 782,789, 2008 [source]


TNF-,-mediated signal transduction pathway is a major determinant of apoptosis in dilated cardiomyopathy

JOURNAL OF CELLULAR AND MOLECULAR MEDICINE, Issue 7 2010
Samarjit Das
Abstract Although J2N-k strain of cardiomyopathic hamsters is an excellent model of dilated cardiomyopathy, the presence and mechanisms of apoptosis in the hearts of these genetically modified animals have not been investigated. This study examined the hypothesis that cardiac dysfunction and apoptosis in the cardiomyopathic hamsters were associated with tumour necrosis factor-alpha (TNF-,)-mediated signalling pathway involving the activation of some pro-apoptotic proteins and/or deactivation of some antiapoptotic proteins. Echocardiographic assessment of 31-week-old hamsters indicated an increase in the internal dimension of the left ventricle as well as decreases in the ejection fraction, fractional shortening and cardiac output without any evidence of cardiac hypertrophy. Increased level of TNF-, and apoptosis in cardiomyopathic hearts were accompanied by increased protein content for protein kinase C (PKC) -, and -, isozymes as well as caspases 3 and 9. Phosphorylated protein content for p38 MAPK and NF,B was increased whereas that for Erk1/2, BAD and Bcl-2 was decreased in cardiomyopathic hearts. These results support the view that TNF-, and PKC isozymes may promote apoptosis due to the activation of p38 MAPK and deactivation of Erk1/2 pathways, and these changes may contribute toward the development of cardiac dysfunction in dilated cardiomyopathy. [source]


Role of atypical protein kinase C isozymes and NF-,B in IL-1,-induced expression of cyclooxygenase-2 in human myometrial smooth muscle cells

JOURNAL OF CELLULAR PHYSIOLOGY, Issue 3 2007
Sara V. Duggan
Increased myometrial expression of cyclooxygenase-2 (Cox-2) at term results from elevated local levels of inflammatory cytokines, and its inhibition provides a potential route for intervention in human pre-term labor. We have identified a role for atypical protein kinase C (PKC) isozymes in IL-1,-induced Cox-2 expression in human myometrial smooth muscle cells (HMSMC). The PKC inhibitor GF109203X (10 µM) inhibited IL-1,-induced Cox-2 protein and RNA expression, which were also reduced by MAPK and nuclear factor ,B (NF-,B) inhibitors. GF109203X did not affect MAPK activities, and neither did it replicate the effect of p38 MAPK inhibition on Cox-2 mRNA stability, suggesting that PKC operates through an independent mechanism. The effect of GF109203X remained intact after depletion of conventional and novel PKC isozymes by phorbol ester pre-treatment. In contrast LY379196 (10 µM), which at micromolar concentrations inhibits all but atypical PKCs, did not affect Cox-2 expression. A peptide corresponding to the pseudosubstrate sequence of atypical PKCs blocked Cox-2 protein expression, whereas the sequence from conventional PKCs was ineffective. GF109203X did not affect NF-,B binding to nuclear proteins, but strongly reduced NF-,B-dependent transcription in luciferase reporter assays. Our findings indicate that IL-1,-induced Cox-2 expression in HMSMC in culture requires p38-MAPK-mediated mRNA stabilization and an independent activation of Cox-2 transcription which is dependent on the action of atypical PKCs, probably through direct stimulation of the transactivating activity of NF-,B. J. Cell. Physiol. 210: 637,643, 2007. © 2006 Wiley-Liss, Inc. [source]


Subcellular redistribution of protein kinase C isozymes is associated with rat liver cirrhotic changes induced by carbon tetrachloride or thioacetamide

JOURNAL OF GASTROENTEROLOGY AND HEPATOLOGY, Issue 1 2001
Da-Hee Jeong
Abstract Background and Aims: Protein kinase C (PKC) plays a key role in the alteration of signal transduction in the liver, which may contribute to the development of liver cirrhosis. The aim of the present study was to examine the subcellular redistribution of PKC isozymes in rat liver cirrhosis, which is induced by two different cirrhotic chemical agents, carbon tetrachloride (CCl4) and thioacetamide (TAA). Methods and Results: Thioacetamide and CCl4 were administered to rats for 8 and 30 weeks, respectively before rats were killed and autopsies performed at 9, 20 and 30 weeks later. The TAA induced a fibrotic pattern in the liver that differed from that produced by CCl4, notably in the formation of fibrous connective tissue and the proliferation of bile ductule cells. Cholangiofibrosis and clear-cell foci were also observed in TAA-treated rats at 30 weeks. Histological examination revealed that severe cirrhotic changes were present 9 weeks after the commencement of CCl4 treatment and 30 weeks after TAA treatment. Discussion: When the subcellular redistribution of PKC isozymes (PKC,, -,1, -,, and -,) was examined, all the PKC isozymes in CCl4 -treated rats were found to be translocated to the membrane fraction, which may mean PKC activation, and then downregulated by proteolytic degradation after 9 weeks of treatment, which coincided with peak cirrhotic changes. All rats treated with CCl4 recovered to the control level after 20 weeks of treatment. In the case of TAA-treated rats, PKC isozymes were translocated to the particulate fraction of the liver after 9 weeks of treatment and this persisted in most of the rats for the duration of the experiment. Conclusions: From these results, it would appear that PKC translocation preceded morphologic changes, and that an altered subcellular distribution of the PKC isozyme may be associated with the response to liver damage and carcinogenesis. [source]


Enhanced generation of Alzheimer's amyloid-, following chronic exposure to phorbol ester correlates with differential effects on alpha and epsilon isozymes of protein kinase C

JOURNAL OF NEUROCHEMISTRY, Issue 2 2009
Odete A. B. Da Cruz e Silva
Abstract Alzheimer's amyloid precursor protein (APP) sorting and processing are modulated through signal transduction mechanisms regulated by protein phosphorylation. Notably, protein kinase C (PKC) appears to be an important component in signaling pathways that control APP metabolism. PKCs exist in at least 11 conventional and unconventional isoforms, and PKC, and PKC, isoforms have been specifically implicated in controlling the generation of soluble APP and amyloid-, (A,) fragments of APP, although identification of the PKC substrate phospho-state-sensitive effector proteins remains challenging. In the current study, we present evidence that chronic application of phorbol esters to cultured cells in serum-free medium is associated with several phenomena, namely: (i) PKC, down-regulation; (ii) PKC, up-regulation; (iii) accumulation of APP and/or APP carboxyl-terminal fragments in the trans Golgi network; (iv) disappearance of fluorescence from cytoplasmic vesicles bearing a green fluorescent protein tagged form of APP; (v) insensitivity of soluble APP release following acute additional phorbol application; and (vi) elevated cellular APP mRNA levels and holoprotein, and secreted A,. These data indicate that, unlike acute phorbol ester application, which is accompanied by lowered A, generation, chronic phorbol ester treatment causes differential regulation of PKC isozymes and increased A, generation. These data have implications for the design of amyloid-lowering strategies based on modulating PKC activity. [source]


Two conventional protein kinase C isoforms, , and ,I, are involved in the ATP-induced activation of volume-regulated anion channel and glutamate release in cultured astrocytes

JOURNAL OF NEUROCHEMISTRY, Issue 6 2008
Alena Rudkouskaya
Abstract Volume-regulated anion channels (VRACs) are activated by cell swelling and are permeable to inorganic and small organic anions, including the excitatory amino acids glutamate and aspartate. In astrocytes, ATP potently enhances VRAC activity and glutamate release via a P2Y receptor-dependent mechanism. Our previous pharmacological study identified protein kinase C (PKC) as a major signaling enzyme in VRAC regulation by ATP. However, conflicting results obtained with potent PKC blockers prompted us to re-evaluate the involvement of PKC in regulation of astrocytic VRACs by using small interfering RNA (siRNA) and pharmacological inhibitors that selectively target individual PKC isoforms. In primary rat astrocyte cultures, application of hypoosmotic medium (30% reduction in osmolarity) and 20 ,M ATP synergistically increased the release of excitatory amino acids, measured with a non-metabolized analog of l -glutamate, d -[3H]aspartate. Both Go6976, the selective inhibitor of Ca2+ -sensitive PKC,, ,I/II, and ,, and MP-20-28, a cell permeable pseudosubstrate inhibitory peptide of PKC, and ,I/II, reduced the effects of ATP on d -[3H]aspartate release by ,45,55%. Similar results were obtained with a mixture of siRNAs targeting rat PKC, and ,I. Surprisingly, down-regulation of individual , and ,I PKC isozymes by siRNA was completely ineffective. These data suggest that ATP regulates VRAC activity and volume-sensitive excitatory amino acid release via cooperative activation of PKC, and ,I. [source]


Toward the development of new medicinal leads with selectivity for protein kinase C isozymes

THE CHEMICAL RECORD, Issue 4 2005
Kazuhiro Irie
Abstract Tumor promoters such as phorbol esters bind strongly to protein kinase C (PKC) isozymes to induce their activation. Since each PKC isozyme is involved in diverse biological events in addition to tumor promotion, the isozymes serve as promising therapeutic targets. Tumor promoters bind to the C1A and/or C1B domain of conventional (,, ,I, ,II, and ,) and novel PKC isozymes (,, ,, ,, and ,). As these C1 domains play differential roles in PKC activation and their translocation in cells, the development of agents with binding selectivity for individual C1 domains is a pressing need. For this purpose, we established a synthetic C1 peptide library of all PKC isozymes. The library enabled us to identify indolactam-V (1) as a promising lead compound. Our diverse structure,activity studies on 1 indicated that the position of the hydrophobic substituent on the indole ring dominates the PKC isozyme- and C1 domain-selective binding rather than conformation of the nine-membered lactam. Moreover, we suggested that the indole ring of 1 could be involved in the CH/, interaction with Pro-11 of the C1B domain of PKC,. This invaluable information will lead to the structural optimization of the PKC, ligand as exemplified by the design and synthesis of naphtholactam-V8 (21). © 2005 The Japan Chemical Journal Forum and Wiley Periodicals, Inc. Chem Rec 5: 185,195; 2005: Published online in Wiley InterScience (www.interscience.wiley.com) DOI 10.1002/tcr.20044 [source]


Protein Kinase C Activators as Synaptogenic and Memory Therapeutics

ARCHIV DER PHARMAZIE, Issue 12 2009
Miao-Kun Sun
Abstract The last decade has witnessed a rapid progress in understanding of the molecular cascades that may underlie memory and memory disorders. Among the critical players, activity of protein kinase C (PKC) isoforms is essential for many types of learning and memory and their dysfunction, and is critical in memory disorders. PKC inhibition and functional deficits lead to an impairment of various types of learning and memory, consistent with the observations that neurotoxic amyloid inhibits PKC activity and that transgenic animal models with PKC, deficit exhibit impaired capacity in cognition. In addition, PKC isozymes play a regulatory role in amyloid production and accumulation. Restoration of the impaired PKC signal pathway pharmacologically results in an enhanced memory capacity and synaptic remodeling / repair and synaptogenesis, and, therefore, represents a potentially important strategy for the treatment of memory disorders, including Alzheimer's dementia. The PKC activators, especially those that are isozyme-specific, are a new class of drug candidates that may be developed as future memory therapeutics. [source]


Possible role of the protein kinase C/CPI-17 pathway in the augmented contraction of human myometrium after gestation

BRITISH JOURNAL OF PHARMACOLOGY, Issue 7 2003
Hiroshi Ozaki
Activation of protein kinase C (PKC) by phorbol 12,13-dibutylate (PDBu, 1 ,M) induced sustained contractions with no increase in [Ca2+]i in nonpregnant and pregnant human myometria. The contractile effects of PDBu in pregnant myometrium were much greater than those in nonpregnant myometrium, and the contractions in pregnant myometrium were accompanied by an increase in myosin light chain (MLC) phosphorylation at Ser19. The contraction induced by PDBu in pregnant myometrium was inhibited by the inhibitors of conventional PKC isoforms, bisindolylmaleimides and indolocarbazole, such as Go6976, Go6983, and Go6850 (1 ,M). LY333531 (1 ,M), a specific inhibitor of PKC,, also inhibited the PDBu-induced contraction in the pregnant myometrium. In the pregnant myometrium permeabilized with , -toxin, PDBu increased the contractions induced at fixed Ca2+ concentration (0.3 ,M) both in nonpregnant and pregnant myometria, indicating Ca2+ sensitization of contractile elements. Western immunoblot analysis indicated that pregnant myometrium contained PKC isozymes such as conventional PKC (,, ,, ,), novel PKC (,, ,, ,), and atypical PKC (, but not , and ,). RT-PCR and real-time RT-PCR analysis indicated that, among the conventional PKC, the levels of mRNA of , isoform in pregnant human myometrium were greater than those in nonpregnant myometrium. CPI-17 is a substrate for PKC, and the phosphorylated CPI-17 is considered to inhibit myosin phosphatase. The levels of CPI-17 mRNA and protein expression were also greater in the pregnant myometrium. These results suggest that the PKC-mediated contractile mechanism is augmented in human myometrium after gestation, and that this augmentation may be attributable to the increased activity of the , PKC isoform and CPI-17. British Journal of Pharmacology (2003) 140, 1303,1312. doi:10.1038/sj.bjp.0705552 [source]


Protein kinase C involvement in aloe-emodin- and emodin-induced apoptosis in lung carcinoma cell

BRITISH JOURNAL OF PHARMACOLOGY, Issue 5 2001
Hong-Zin Lee
This study demonstrated aloe-emodin- and emodin-induced apoptosis in lung carcinoma cell lines CH27 (human lung squamous carcinoma cell) and H460 (human lung non-small cell carcinoma cell). Aloe-emodin- and emodin-induced apoptosis was characterized by nuclear morphological changes and DNA fragmentation. During apoptosis, an increase in cytochrome c of cytosolic fraction and activation of caspase-3, identified by the cleavage of its proform, were observed. To elucidate whether the expression of protein kinase C (PKC) isozymes are involved in aloe-emodin- and emodin-induced apoptosis, this study examined the changes of PKC isozymes by Western blotting techniques during aloe-emodin- and emodin-induced apoptosis. The expression of PKC isozymes involved in aloe-emodin- and emodin-induced apoptosis of CH27 and H460 cells. In this study, aloe-emodin and emodin induced the changes of each of PKC isozymes in CH27 and H460 cells. The decrease in the expression of PKC, and , may play a critical role in aloe-emodin- and emodin-induced apoptosis in CH27 and H460 cells. The present study also demonstrated that PKC stimulation occurs at a site downstream of caspase-3 in the emodin-mediated apoptotic pathway. British Journal of Pharmacology (2001) 134, 1093,1103; doi:10.1038/sj.bjp.0704342 [source]


Effects of the PKC inhibitor PD 406976 on cell cycle progression, proliferation, PKC isozymes and apoptosis in glioma and SVG-transformed glial cells

CELL PROLIFERATION, Issue 2 2005
C. Russell
However, reports differ on which PKC isozymes are responsible for glioma proliferation. As a means to further elucidate this, the objectives of our research were to determine how inhibition of PKC-,, PKC-, and PKCµ with PD 406976 regulates the cell cycle, cell proliferation and PKC during glioma growth and development. To establish the cell cycle effects of PD 406976 on brain cells (SVG, U-138MG and U-373MG glioma cells), specimens were treated with either dimethylsulfoxide (DMSO; control) or PD 406976 (2 µm). Results from flow cytometry demonstrated that PD 406976 delayed the entry DNA synthesis phase in SVG cells and delayed the number of cells entering and exiting the DNA synthesis phase in both U-138MG and U-373MG cells, indicating that PD 406976 may inhibit G1/S and S phase progression. Assessment of cell viability demonstrated a cytostatic effect of PD 406976 on SVG, U-138MG and U-373MG glioma cell proliferation. The PD 406976-induced decreased proliferation was sustained at 48,96 h. A PKC activity assay was quantified and demonstrated that exposure of SVG and U-373MG glioma cells to PD 406976 suppressed PKC activity. Western blotting demonstrated reduced PKC-,1, PKC-, and PKC-, protein content in cells treated with PD 406976. We determined that the growth inhibitory effect of PD 406976 was not as a result of apoptosis. [source]


Multiple Mechanisms Of Early Hyperglycaemic Injury Of The Rat Intestinal Microcirculation

CLINICAL AND EXPERIMENTAL PHARMACOLOGY AND PHYSIOLOGY, Issue 1-2 2002
H Glenn Bohlen
SUMMARY 1. Hyperglycaemia in the vast majority of humans with diabetes mellitus is the end result of profound insulin resistance secondary to obesity. For patients in treatment, hyperglycaemia is usually not sustained but, rather, occurs intermittently. In in vivo studies of the rat intestinal microcirculation, endothelial impairment occurs within 30 min at D -glucose concentrations , 300 mg/dL. Endothelial-dependent dilation to acetylcholine and constriction to noradrenaline is impaired. Vasodilation to exogenous nitric oxide (NO) remains normal. 2. When initiated before hyperglycaemia, suppression of oxygen radicals by both scavenging and pretreatment with cyclo-oxygenase blockade to prevent oxygen radical formation minimized endothelial impairments during hyperglycaemia. Neither treatment was effective in restoring endothelial function once it was damaged by hyperglycaemia. 3. A mechanism that may initiate the arachidonic acid, oxygen radical process is activation of specific isoforms of protein kinase C (PKC). De novo formation of diacylglycerol during hyperglycaemia activates PKC. Blockade of the ,II PKC isoform with LY-333531 prior to hyperglycaemia protected NO formation within the arteriolar wall, as judged with NO-sensitive microelectrodes. Furthermore, once suppression of endothelial dilation was present in untreated animals, PKC blockade could substantially restore endothelial-dependent dilation. 4. These results indicate that acute hyperglycaemia is far from benign and, in the rat, causes rapid endothelial impairment. Both oxygen radical scavenging and cyclo-oxygenase blockade prior to bouts of hyperglycaemia minimize endothelial impairment with limited side effects. Blockade of specific PKC isozymes protects endothelial function both as a pre- or post-treatment during moderately severe hyperglycaemia. [source]