P-glycoprotein Expression (p-glycoprotein + expression)

Distribution by Scientific Domains


Selected Abstracts


Regulation of multidrug resistance 2 P-glycoprotein expression by bile salts in rats and in primary cultures of rat hepatocytes

HEPATOLOGY, Issue 2 2000
Seema Gupta
Biliary phospholipid secretion is tightly coupled to the secretion of free cholesterol and bile salts. The secretion of phospholipids across the canalicular membrane of hepatocytes occurs via the multidrug resistance 2 (mdr2) P-glycoprotein (Pgp). The mechanism underlying the coupling of bile salt and phospholipid secretion has not been elucidated. The aims of this study were to determine the effects of bile acid structure on the expression of mdr2 in vitro and in vivo. Under optimal culture conditions, taurine-conjugated bile acids (50 ,mol/L) increased mdr2 messenger RNA (mRNA) levels in the following order: taurocholate (TCA) (288 ± 36%, P < .005) = taurodeoxycholate (TDCA) (276 ± 36%, P < .025) > taurochenodeoxycholate (TCDCA) (216 ± 34%, P < .025) > tauroursodeoxycholate (TUDCA) (175 ± 28%, P < .05) of control levels. The increase in mdr2 mRNA levels by TCA was both time and concentration dependent. Cholate feeding to rats with intact enterohepatic circulation increased mdr2 transcriptional activity by 4-fold and protein mass by 1.9-fold. Chronic biliary diversion (CBD) decreased mdr2 mRNA levels to 66 ± 9% (P < .025) of sham-operated controls. Intraduodenal infusion of TCA for 48 hours in CBD rats caused a significant increase in mdr2 mRNA levels (224%) as compared with CBD controls. A diet high in cholesterol (4%) decreased mdr2 mRNA levels to 57% ± 2 (P < .001) of pair-fed controls. Squalestatin (1 ,mol/L), an inhibitor of cholesterol biosynthesis, increased mdr2 mRNA levels by 8.8-fold (P < .005) in hepatocyte cultures after 24 hours. In conclusion, in the rat, bile acids up-regulated mdr2 transcriptional activity whereas cholesterol decreased mdr2 mRNA both in vitro and in vivo. [source]


Stereoselective disposition of talinolol in man

JOURNAL OF PHARMACEUTICAL SCIENCES, Issue 2 2002
Michael Zschiesche
Abstract The disposition of the ,-blocking drug talinolol is controlled by P-glycoprotein in man. Because talinolol is marketed as a racemate, we reevaluated the serum-concentration time profiles of talinolol of a previously published study with single intravenous (30 mg) and repeated oral talinolol (100 mg for 14 days) before and after comedication of rifampicin (600 mg per day for 9 days) in eight male healthy volunteers (age 22,26 years, body weight 67,84 kg) with respect to differences in the kinetic profiles of the two enantiomers S(,) talinolol and R(+) talinolol. Additionally, the metabolism of talinolol in human liver microsomes was examined. After oral administration, S(,) talinolol was slightly less absorbed and faster eliminated than R(+) talinolol. The absolute bioavailabilty of the R(+) enantiomer of talinolol was slightly but significantly higher than of its S(,) enantiomer. Coadministration of rifampicin further intensified this difference in the disposition of R(+) and S(,) talinolol (p,<,0.05). Formation of 4-trans hydroxytalinolol was the major metabolic pathway in human liver microsomes. All Clint values of S(,) were higher than of R(+) talinolol; 0.1 ,M ketoconazole inhibited the formation of all metabolites. In conclusion, the stereoselectivity of talinolol disposition is of minor importance, and most likely caused by presystemic biotransformation via CYP3A4. The less active R(+) talinolol might be suitable for phenotyping P-glycoprotein expression in man. © 2002 Wiley-Liss, Inc. and the American Pharmaceutical Association J Pharm Sci 91:303,311, 2002 [source]


Direct current decreases cell viability but not P-glycoprotein expression and function in human multidrug resistant leukemic cells

BIOELECTROMAGNETICS, Issue 7 2001
Carla Holandino
Abstract Inhibition of tumor growth induced by treatment with direct current (DC) has been reported in several systems. In the current work, the cellular effects generated by the DC treatment of the human leukemic K562 cell line and its vincristine-resistant derivative K562-Lucena 1 were analyzed by trypan blue staining and transmission electron microscopy. DC stimulation induced cell lysis, alterations in shape, membrane extraction or discontinuity, and intense vacuolization of some cells. In addition, treatment of K562 and K562-Lucena 1 cells caused a marked decrease in viability. Since multidrug resistance is a major factor contributing with failure of chemotherapy in many tumors, the expression and function of P-glycoprotein (P-gp) in K562-Lucena 1 cells were also studied. The expression of mdr1, the gene encoding P-gp, was analyzed by reverse transcription polymerase chain reaction, which showed that this gene was equally expressed in either treated or untreated cells. These results were confirmed by flow cytometry with a monoclonal anti P-gp antibody and the Rhodamine 123 extrusion method, which revealed that P-gp surface expression and function were unaltered after DC treatment. Our results suggest that DC treatment does not affect P-gp in human leukemic cells, but affects their viability by mechanisms that would involve clear cellular effects, but also additional targets, whose relevance in dc treated tumoral cells is currently discussed. Bioelectromagnetics 22:470,478, 2001. © 2001 Wiley-Liss, Inc. [source]


High P-glycoprotein-mediated export observed in patients with a history of idiopathic thrombocytopenic purpura

BRITISH JOURNAL OF HAEMATOLOGY, Issue 3 2002
Adam S. Levy
Summary., Studies have suggested that high P-glycoprotein expression in lymphocytes from patients with autoimmune disorders may affect disease outcome. Idiopathic thrombocytopenic purpura (ITP) and Evans' syndrome are widely thought to be autoimmune processes, however, the precise mechanisms remain unknown. Peripheral blood mononuclear cells from patients with refractory or recurrent ITP or Evans' syndrome were studied using the rhodamine 123 flow cytometric assay to investigate functional export levels. Lymphocytes from ITP and Evans' syndrome patients showed a significantly decreased ability to retain rhodamine, suggesting increased export protein function. Reverse transcription polymerase chain reaction distinguished P-glycoprotein as the likely export protein. [source]