P Fractions (p + fraction)

Distribution by Scientific Domains


Selected Abstracts


Lime and cow slurry application temporarily increases organic phosphorus mobility in an acid soil

EUROPEAN JOURNAL OF SOIL SCIENCE, Issue 3 2007
P. N. C. MurphyArticle first published online: 13 OCT 200
Summary Phosphorus loss from agricultural soils to water is recognized as a major contributor to eutrophication of surface water bodies. There is much evidence to suggest that liming, a common agricultural practice, may decrease the risk of P loss by decreasing P solubility. An unsaturated leaching column experiment, with treatments of control and two lime rates, was carried out to investigate the effects of liming on P mobility in a low-P acid Irish soil, which was sieved and then packed in columns. Phosphorus was applied at the soil surface in the form of KH2PO4 in solution or as cow slurry. Soil solution was sampled at time intervals over depth and analysed for P fractions. Organic P (OP) was the dominant form of P mobile in soil solution. Liming increased OP mobility, probably through increased dispersion of OP with increased pH. Slurry application also increased OP mobility. Results indicated the potential for OP loss following heavy (100 m,3 ha,1) cow slurry application, even from low-P soils, and suggested that liming may increase this risk. Reactive P (RP) was sorbed strongly and rapidly by the soil and did not move substantially below 5 cm depth. As a result, Olsen-P values in the top 2 cm were greatly increased, which indicates an increased risk of RP loss in overland flow. Lime showed little potential as a soil amendment to reduce the risk of P loss. [source]


Spatial variability of sequentially extracted P fractions in a silty loam

JOURNAL OF PLANT NUTRITION AND SOIL SCIENCE, Issue 3 2005
Elena Heilmann
Abstract Knowledge of the spatial distribution of soil P forms in agricultural fields is important for evaluating the risk of P transfer to waterways. The objective of this study was to characterize the spatial variation of total P (Pt) and sequentially extracted P forms in the Ap horizon of arable soils at the field scale. Soil samples were taken on a regular grid of 50 m × 50 m with 40 sampling points. Chemical analyses included basic soil properties, Pt, sequentially extracted P forms, and acid phosphomonoesterase activity. The spatial variability was analyzed by geostatistics and descriptive statistics. The concentrations of Pt ranged from 521 to 1020 mg,kg,1 with lower values observed for Gleysols and Stagnic Phaeozems and higher values for Luvisols and Cambisols. For the sequentially extracted P fractions, the largest coefficients of variation (c.v.) were found for NaHCO3 -Po (41%), NaHCO3 -Pi (36%), NaOH-Po (34%), and resin-P (33%). Despite this great spatial variability, no spatial dependence could be proved by geostatistics because the calculated range of P forms (<10 m) was below the smallest sampling distance (50 m). A clear trend of increasing concentrations and proportions of organic NaHCO3 - and NaOH-P fractions and phosphomonoesterase activity towards lower slope positions and the discharging brook indicated that Gleysols were a particular source of P losses to waterways in this catchment. It was concluded that these soils require a specific management with reduced P inputs and, perhaps, chemical treatment to fix leachable P. Räumliche Variabilität sequenziell extrahierter P-Fraktionen in einem Schlufflehm Kenntnisse über die räumliche Verteilung der P-Formen in landwirtschaftlichen Flächen sind notwendig für die Abschätzung des Risikos von P-Austrägen. Gegenstand dieser Untersuchung war die räumliche Verteilung von Gesamt-P (Pt) und P-Formen im Ap-Horizont von landwirtschaftlich genutzten Böden im Feldmaßstab. Dazu wurden Proben auf einem Raster von 50 m × 50 m an 40 Punkten entnommen. Die chemischen Analysen umfassten Grundeigenschaften sowie Pt, sequenziell extrahierte P-Formen und die Aktivität der sauren Phosphomonoesterase. Die räumliche Variabilität wurde mit räumlicher und deskriptiver Statistik untersucht. Die Pt -Gehalte lagen im Bereich von 521 bis 1020 mg,kg,1, wobei Gleye und Pseudogleye die niedrigsten Werte hatten. Bei den sequenziell extrahierten P-Fraktionen wurden die größten Variationskoeffizienten für NaHCO3 -Po (41%), NaHCO3 -Pi (36 %), NaOH-Po (34 %) und Harz-P (33 %) festgestellt. Trotz dieser großen räumlichen Variabilität konnte mit Geostatistik keine räumliche Abhängigkeit nachgewiesen werden, möglicherweise weil die geschätzte Reichweite der P-Formen mit <10 m unterhalb der kleinsten Beprobungsdistanz von 50 m lag. Deutliche gerichtete Trends steigender Gehalte und Anteile organischer NaHCO3 - und NaOH-P-Fraktionen und Phosphomonoesterase-Aktivitäten hin zu niedrigeren Geländepositionen und zur Nachbarschaft zu dem entwässernden Bach deuteten darauf hin, dass insbesondere Gleye eine Quelle der P-Einträge in Oberflächengewässer des Einzugsgebietes sein können. Es ergibt sich daher die Schlussfolgerung, dass diese Böden einer teilschlagspezifischen Bewirtschaftung mit reduzierten P-Zufuhren und eventuell P-fixierenden Behandlungen bedürfen. [source]


Soil Phosphorus Fractionation during Forest Development on Landslide Scars in the Luquillo Mountains, Puerto Rico,

BIOTROPICA, Issue 1 2002
Jacqueline Frizano
ABSTRACT Mineral soils from a chronosequence of landslide scars ranging in age from 1 to more than 55 years in a subtropical montane rain forest of eastern Puerto Rico were used to determine the rate at which labile P capital recovers during primary succession. Nine organic and inorganic soil P fractions were measured using the Hedley sequential extraction procedure. Deep soil cores (9 m) from a nearby site were also analyzed to determine the distribution of P fractions below the solum. Litterfall P was measured for two years in the landslide scars to estimate allochthonous litter P inputs, and published precipitation data were used to estimate annual atmospheric inputs of P to the recovering forests. In the upper solum (0,10 cm), organic matter increased with landslide age, as did resin-Pi, labile P (defined here as resin-Pi + HCO3 -Pi + HCO3 -Po) and total organic P. Occluded P decreased with increasing landslide age. No significant changes in P concentrations or pools were observed in 10 to 35 or in 35 to 60 cm depth intervals across the chronosequence. Labile soil P increased to approximately two-thirds of the pre-disturbance levels in the oldest landslide scar (>55 yr). Thus, plants, their associated microflora/fauna, and P inputs from off-site substantially altered the distribution of soil P fractions during forest recovery. Across the chronosequence, the increase in labile P accumulated in soil and biomass appeared to be greater than the estimated allochthonous inputs from litter and precipitation, indicating that as the forest developed, some occluded P may have been released for use by soil biota. Resin-Pi and labile P were correlated with soil organic matter content, suggesting, as in other highly weathered soils, organic matter accumulation and turnover are important in maintaining labile P pools. Primary mineral P (apatite) was scarce, even in deep soil cores. [source]


Nutrient Dynamics of Soil Derived from Different Parent Material on Barro Colorado Island, Panama,

BIOTROPICA, Issue 2 2000
Joseph B. Yavitt
ABSTRACT I compared the concentrations of N, P, and S in both litter and mineral soil (0,15 cm depth) from three old-growth, tropical moist forests on Barro Colorado Island (BCI), Panama. Each site was on a different substrate (i.e., parent material), but otherwise had similar climate, vegetation, and topography. There were no site differences in concentrations of N and S for either litter or soil. Concentrations of litter P and soil-extractable P were greater for the andesite (igneous rock) site than for two sites on different sedimentary rocks; however, concentrations of several other litter and soil P fractions did not differ among sites. Patterns in soil P fractions suggested advanced soil development to the point that parent material has little control of P dynamics. Litter samples from each site, leached in the laboratory, released similar amounts of N, P, and S to the soil, indicating no differences in rates of turnover in the litter and in fluxes from litter into the mineral soil among sites. I expected more site differences in soil nutrient dynamics given vastly different parent materials and soil types (i.e., Oxisol vs. Alfisol) and very shallow soil on BCI that brings the parent material close to the plant root zone. Erosion and soil mixing may explain the uniformity in soil nutrient dynamics across the sites. [source]