P2Y Receptor Activation (p2y + receptor_activation)

Distribution by Scientific Domains


Selected Abstracts


P2Y receptor-activating nucleotides modulate cellular reactive oxygen species production in dissociated hippocampal astrocytes and neurons in culture independent of parallel cytosolic Ca2+ rise and change in mitochondrial potential

JOURNAL OF NEUROSCIENCE RESEARCH, Issue 15 2007
Stefan Kahlert
Abstract With mixed cultures of hippocampal astrocytes and neurons, we investigated the influence of nucleotides on cytosolic Ca2+ level, generation of reactive oxygen species (ROS), and mitochondrial potential. We employed ATP and four purine/pyrimidine derivates, which are P2Y receptor subtype-preferring agonists. Stimulation with ATP, a P2Y1/2/4 receptor agonist in rat, caused a large cytosolic Ca2+ increase in astrocytes and a considerably smaller Ca2+ response in neighboring neurons. The P2Y1 receptor antagonist MRS2179 completely blocked the ATP-induced Ca2+ response in astrocytes and neurons. Application of ATP significantly reduced the mitochondrial potential in neurons, which was not inhibited by MRS2179. Interestingly, MRS2179 mediated a mitochondrial depolarization without affecting the cytosolic Ca2+ level. Stimulation with UDP, a P2Y6 receptor agonist; UTP, a P2Y2/4 receptor agonist; 2MeSATP, a P2Y1 receptor agonist; or 2MeSADP, a P2Y1/12/13 receptor agonist, evoked significant Ca2+ responses in astrocytes but small Ca2+ responses in neurons. In astrocytes, there was an inverse relationship between the amplitude of the cytosolic Ca2+ peak and the rate of ROS generation in response to nucleotide application. Activation with UDP resulted in the highest ROS generation that we detected, whereas 2MeSADP and 2MeSATP reduced the ROS generation below the basal level. 2MeSADP and UDP caused mitochondrial depolarization of comparable size. Thus, neither in astrocytes nor in neurons did the degree of mitochondrial depolarization correlate with ROS generation. Nucleotides acting via P2Y receptors can modulate ROS generation of hippocampal neurons without acutely changing the cytosolic Ca2+ level. Thus, ROS might function as a signaling molecule upon nucleotide-induced P2Y receptor activation in brain. © 2007 Wiley-Liss, Inc. [source]


Apical SK potassium channels and Ca2+ -dependent anion secretion in endometrial epithelial cells

THE JOURNAL OF PHYSIOLOGY, Issue 3 2008
Melissa L. Palmer
Apical uridine triphosphate (UTP) stimulation was shown to increase short circuit current (Isc) in immortalized porcine endometrial gland epithelial monolayers. Pretreatment with the bee venom toxin apamin enhanced this response. Voltage-clamp experiments using amphotericin B-permeablized monolayers revealed that the apamin-sensitive current increased immediately after UTP stimulation and was K+ dependent. The current,voltage relationship was slightly inwardly rectifying with a reversal potential of ,52 ± 2 mV, and the PK/PNa ratio was 14, indicating high selectivity for K+. Concentration,response relationships for apamin and dequalinium had IC50 values of 0.5 nm and 1.8 ,m, respectively, consistent with data previously reported for SK3 channels in excitable cells and hepatocytes. Treatment of monolayers with 50 ,m BAPTA-AM completely blocked the effects of UTP on K+ channel activation, indicating that the apamin-sensitive current was also Ca2+ dependent. Moreover, channel activation was blocked by calmidazolium (IC50= 5 ,m), suggesting a role for calmodulin in Ca2+ -dependent regulation of channel activity. RT-PCR experiments demonstrated expression of mRNA for the SK1 and SK3 channels, but not SK2 channels. Treatment of monolayers with 20 nm oestradiol-17, produced a 2-fold increase in SK3 mRNA, a 2-fold decrease in SK1 mRNA, but no change in GAPDH mRNA expression. This result correlated with a 2.5-fold increase in apamin-sensitive K+ channel activity in the apical membrane. We speculate that SK channels provide a mechanism for rapidly sensing changes in intracellular Ca2+ near the apical membrane, evoking immediate hyperpolarization necessary for increasing the driving force for anion efflux following P2Y receptor activation. [source]


Protein kinase C mediates up-regulation of tetrodotoxin-resistant, persistent Na+ current in rat and mouse sensory neurones

THE JOURNAL OF PHYSIOLOGY, Issue 3 2005
Mark D. Baker
The tetrodotoxin-resistant (TTX-r) persistent Na+ current, attributed to NaV1.9, was recorded in small (< 25 ,m apparent diameter) dorsal root ganglion (DRG) neurones cultured from P21 rats and from adult wild-type and NaV1.8 null mice. In conventional whole-cell recordings intracellular GTP-,-S caused current up-regulation, an effect inhibited by the PKC pseudosubstrate inhibitor, PKC19,36. The current amplitude was also up-regulated by 25 ,m intracellular 1-oleoyl-2-acetyl-sn-glycerol (OAG) consistent with PKC involvement. In perforated-patch recordings, phorbol 12-myristate 13-acetate (PMA) up-regulated the current, whereas membrane-permeant activators of protein kinase A (PKA) were without effect. PGE2 did not acutely up-regulate the current. Conversely, both PGE2 and PKA activation up-regulated the major TTX-r Na+ current, NaV1.8. Extracellular ATP up-regulated the persistent current with an average apparent Kd near 13 ,m, possibly consistent with P2Y receptor activation. Numerical simulation of the up-regulation qualitatively reproduced changes in sensory neurone firing properties. The activation of PKC appears to be a necessary step in the GTP-dependent up-regulation of persistent Na+ current. [source]


Heterologous desensitization of the sphingosine-1-phosphate receptors by purinoceptor activation in renal mesangial cells

BRITISH JOURNAL OF PHARMACOLOGY, Issue 5 2004
Cuiyan Xin
Sphingosine-1-phosphate (S1P) is considered a potent mitogen for mesangial cells and activates the classical mitogen-activated protein kinase (MAPK) cascade via S1P receptors. In this study, we show that S1P signalling is rapidly desensitized upon S1P receptor activation. A complete loss of S1P sensitivity occurs after 10 min of S1P pretreatment and remains for at least 8 h. A similar desensitization is also seen with the S1P mimetic FTY720-phosphate, but not with the nonphosphorylated FTY720, nor with sphingosine or ceramide. Prestimulating the cells with extracellular ATP or UTP, which bind to and activate P2Y receptors on mesangial cells, a similar rapid desensitization of the S1P receptor occurs, suggesting a heterologous desensitization of S1P receptors by P2Y receptor activation. Furthermore, adenosine binding to P1 receptors triggers a similar desensitization. In contrast, two other growth factors, PDGF-BB and TGF,2, have no significant effect on S1P-induced MAPK activation. S1P also triggers increased inositol trisphosphate (IP3) formation, which is completely abolished by S1P pretreatment but only partially by ATP pretreatment, suggesting that IP3 formation and MAPK activation stimulated by S1P involve different receptor subtypes. Increasing intracellular cAMP levels by forskolin pretreatment has a similar effect on desensitization as adenosine. Moreover, a selective A3 adenosine receptor agonist, which couples to phospholipase C and increases IP3 formation, exerted a similar effect. Pretreatment of cells with various protein kinase C (PKC) inhibitors prior to ATP prestimulation and subsequent S1P stimulation leads to a differential reversal of the ATP effect. Whereas the broad-spectrum protein kinase inhibitor staurosporine potently reverses the effect, the PKC- , inhibitor CGP41251, the PKC- , inhibitor rottlerin and calphostin C show only a partial reversal at maximal concentrations. Suramin, which is reported as a selective S1P3 receptor antagonist compared to the other S1P receptor subtypes, has no effect on the S1P-induced MAPK activation, thus excluding the involvement of S1P3 in this response. In summary, these data document a rapid homologous and also heterologous desensitization of S1P signalling in mesangial cells, which is mechanistically triggered by PKC activation and eventually another staurosporine-sensitive protein kinase, as well as by increased cAMP formation. British Journal of Pharmacology (2004) 143, 581,589. doi:10.1038/sj.bjp.0705980 [source]