Home About us Contact | |||
OVX
Terms modified by OVX Selected AbstractsOvariectomy increases vascular calcification via the OPG/RANKL cytokine signalling pathwayEUROPEAN JOURNAL OF CLINICAL INVESTIGATION, Issue 4 2008B. G. Choi ABSTRACT Background, Observational studies suggest a strong relationship between menopause and vascular calcification. Receptor activator of nuclear factor-,, ligand (RANKL) and osteoprotegerin (OPG) are critical regulators of bone remodelling and modulate vascular calcification. We assessed the hypothesis that ovariectomy increases vascular calcification via the OPG/RANKL axis. Materials and methods, Age-matched sexually mature rabbits were randomized to ovariectomy (OVX, n = 12) or sham procedure (SHAM, n = 12). One month post-procedure, atherosclerosis was induced by 15 months 0·2%-cholesterol diet and endothelial balloon denudations (at months 1 and 3). Aortic atherosclerosis was assessed in vivo by magnetic resonance imaging (MRI) at months 9 and 15. At sacrifice, aortas were harvested for ex vivo microcomputed tomography (µCT) and molecular analysis of the vascular tissue. Results, Vascular calcification density and calcific particle number were significantly greater in OVX than SHAM (8·4 ± 2·8 vs. 1·9 ± 0·6 mg cm,3, P = 0·042, and 94 ± 26 vs. 33 ± 7 particles cm,3, P = 0·046, respectively). Calcification morphology, as assessed by the arc angle subtended by the largest calcific particle, showed no difference between groups (OVX 33 ± 7° vs. SHAM 33 ± 5°, P = 0·99). By Western blot analysis, OVX increased the vascular OPG:RANKL ratio by 66%, P = 0·029, primarily by decreasing RANKL (P = 0·019). At month 9, MRI demonstrated no difference in atheroma volume between OVX and SHAM, and no significant change was seen by the end of the study. Conclusions, In contrast to bone, vascular OPG:RANKL ratio increased in response to ovariectomy with a corresponding fourfold increase in arterial calcification. This diametrical organ-specific response may explain the comorbid association of osteoporosis with calcifying atherosclerosis in post-menopausal women. [source] A bone-protective role for IL-17 receptor signaling in ovariectomy-induced bone lossEUROPEAN JOURNAL OF IMMUNOLOGY, Issue 10 2009Jaya Goswami Abstract Post-menopausal osteoporosis is considered to be an inflammatory process, in which numerous pro-inflammatory and T-cell-derived cytokines play a bone-destructive role. IL-17A is the signature cytokine of the pro-inflammatory Th17 population and plays dichotomous roles in diseases that affect bone turnover. Although IL-17A promotes bone loss in rheumatoid arthritis, it is protective against pathogen-induced bone destruction in a periodontal disease model. We used a model of ovariectomy-induced osteoporosis (OVX) in IL-17 receptor (IL-17RA),/, mice to evaluate the role of the IL-17A in bone loss caused by estrogen deficiency. Unexpectedly, IL-17RA,/, mice were consistently and markedly more susceptible to OVX-induced bone loss than controls. There were no changes in prototypical Th1, Th2 or Th17 cytokines in serum that could account for increased bone loss. However, IL-17RA,/, mice exhibited constitutively elevated leptin, which further increased following OVX. Consistently, IL-17A and IL-17F treatment of 3T3-L1 pre-adipocytes inhibited adipogenesis, leading to reduced production of leptin. In addition to its role in regulating metabolism and satiety, leptin can regulate bone turnover. Accordingly, these data show that IL-17A negatively regulates adipogenesis and subsequent leptin expression, which correlates with increased bone destruction during OVX. [source] A nonsecosteroidal vitamin D receptor ligand with improved therapeutic window of bone efficacy over hypercalcemiaJOURNAL OF BONE AND MINERAL RESEARCH, Issue 6 2010Masahiko Sato Abstract Vitamin D3 analogues were shown to be beneficial for osteoporosis and other indications, but their narrow therapeutic window between efficacy and hypercalcemia has limited their clinical utility. A nonsecosteroidal, tissue-selective, orally bioavailable, vitamin D receptor (VDR) ligand was ascertained to be efficacious in bone while having modest calcemic effects in vivo. This compound (VDRM2) potently induced Retinoid X Receptor alpha (RXR)-VDR heterodimerization (EC50,=,7.1,±,1.6,nM) and induced osteocalcin promoter activity (EC50,=,1.9,±,1.6,nM). VDRM2 was less potent in inducing Ca2+ channel transient receptor potential cation channel, subfamily V, member 6 (TRPV6) expression (EC50,=,37,±,12,nM). VDRM2 then was evaluated in osteopenic ovariectomized (OVX) rats and shown to dose-dependently restore vertebral bone mineral density (BMD) from OVX to sham levels at 0.08,µg/kg per day. Hypercalcemia was observed at a dose of 4.6,µg/kg per day of VDRM2, suggesting a safety margin of 57 [90% confidence interval (CI) 35,91]. 1,,25-dihydroxyvitamin D3 [1,,25(OH)2D], ED71, and alfacalcidol restored BMD at 0.030, 0.0055, and 0.046,µg/kg per day, respectively, whereas hypercalcemia was observed at 0.22, 0.027, and 0.23,µg/kg per day, indicating a safety margin of 7.3, 4.9, and 5.0, respectively (90% CIs 4.1,13, 3.2,7.7, and 3.5,6.7, respectively). Histomorphometry showed that VDRM2 increased cortical bone area and stimulated the periosteal bone-formation rate relative to OVX at doses below the hypercalcemic dose. By contrast, ED71 increased the periosteal bone-formation rate only above the hypercalcemic dose. VDRM2 suppressed eroded surface on trabecular bone surfaces at normal serum calcium dosage levels, suggesting dual anabolic and antiresorptive activity. In summary, vitamin D analogues were more potent than VDRM2, but VDRM2 had a greater safety margin, suggesting possible therapeutic potential. © 2010 American Society for Bone and Mineral Research [source] RANKL Inhibition with Osteoprotegerin Increases Bone Strength by Improving Cortical and Trabecular bone Architecture in Ovariectomized Rats,,JOURNAL OF BONE AND MINERAL RESEARCH, Issue 5 2008Michael S Ominsky Abstract Introduction: Ovariectomy (OVX) results in bone loss caused by increased bone resorption. RANKL is an essential mediator of bone resorption. We examined whether the RANKL inhibitor osteoprotegerin (OPG) would preserve bone volume, density, and strength in OVX rats. Materials and Methods: Rats were OVX or sham-operated at 3 mo of age. Sham controls were treated for 6 wk with vehicle (Veh, PBS). OVX rats were treated with Veh or human OPG-Fc (10 mg/kg, 2/wk). Serum RANKL and TRACP5b was measured by ELISA. BMD of lumbar vertebrae (L1,L5) and distal femur was measured by DXA. Right distal femurs were processed for bone histomorphometry. Left femurs and the fifth lumbar vertebra (L5) were analyzed by ,CT and biomechanical testing, and L6 was analyzed for ash weight. Results: OVX was associated with significantly greater serum RANKL and osteoclast surface and with reduced areal and volumetric BMD. OPG markedly reduced osteoclast surface and serum TRACP5b while completely preventing OVX-associated bone loss in the lumbar vertebrae, distal femur, and femur neck. Vertebrae from OPG-treated rats had increased dry and ash weight, with no significant differences in tissue mineralization versus OVX controls. ,CT showed that trabecular compartments in OVX-OPG rats had significantly greater bone volume fraction, vBMD, bone area, trabecular thickness, and number, whereas their cortical compartments had significantly greater bone area (p < 0.05 versus OVX-Veh). OPG improved cortical area in L5 and the femur neck to levels that were significantly greater than OVX or sham controls (p < 0.05). Biomechanical testing of L5 and femur necks showed significantly greater maximum load values in the OVX-OPG group (p < 0.05 versus OVX-Veh). Bone strength at both sites was linearly correlated with total bone area (r2 = 0.54,0.74, p < 0.0001), which was also significantly increased by OPG (p < 0.05 versus OVX). Conclusions: OPG treatment prevented bone loss, preserved trabecular architecture, and increased cortical area and bone strength in OVX rats. [source] Thyroid-Stimulating Hormone Restores Bone Volume, Microarchitecture, and Strength in Aged Ovariectomized Rats*,,§JOURNAL OF BONE AND MINERAL RESEARCH, Issue 6 2007T Kuber Sampath PhD Abstract We show the systemic administration of low levels of TSH increases bone volume and improves bone microarchitecture and strength in aged OVX rats. TSH's actions are mediated by its inhibitory effects on RANKL-induced osteoclast formation and bone resorption coupled with stimulatory effects on osteoblast differentiation and bone formation, suggesting TSH directly affects bone remodeling in vivo. Introduction: Thyroid-stimulating hormone (TSH) receptor haploinsufficient mice with normal circulating thyroid hormone levels have reduced bone mass, suggesting that TSH directly affects bone remodeling. We examined whether systemic TSH administration restored bone volume in aged ovariectomized (OVX) rats and influenced osteoclast formation and osteoblast differentiation in vitro. Materials and Methods: Sprague-Dawley rats were OVX at 6 months, and TSH therapy was started immediately after surgery (prevention mode; n = 80) or 7 mo later (restoration mode; n = 152). Hind limbs and lumbar spine BMD was measured at 2- or 4-wk intervals in vivo and ex vivo on termination at 8,16 wk. Long bones were subjected to ,CT, histomorphometric, and biomechanical analyses. The direct effect of TSH was examined in osteoclast and osteoblast progenitor cultures and established rat osteosarcoma-derived osteoblastic cells. Data were analyzed by ANOVA Dunnett test. Results: In the prevention mode, low doses (0.1 and 0.3 ,g) of native rat TSH prevented the progressive bone loss, and importantly, did not increase serum triiodothyroxine (T3) and thyroxine (T4) levels in aged OVX rats. In restoration mode, animals receiving 0.1 and 0.3 ,g TSH had increased BMD (10,11%), trabecular bone volume (100,130%), trabecular number (25,40%), trabecular thickness (45,60%), cortical thickness (5,16%), mineral apposition and bone formation rate (200,300%), and enhanced mechanical strength of the femur (51,60%) compared with control OVX rats. In vitro studies suggest that TSH's action is mediated by its inhibitory effects on RANKL-induced osteoclast formation, as shown in hematopoietic stem cells cultivated from TSH-treated OVX rats. TSH also stimulates osteoblast differentiation, as shown by effects on alkaline phosphatase activity, osteocalcin expression, and mineralization rate. Conclusions: These results show for the first time that systemically administered TSH prevents bone loss and restores bone mass in aged OVX rats through both antiresorptive and anabolic effects on bone remodeling. [source] Treatment of Skeletally Mature Ovariectomized Rhesus Monkeys With PTH(1-84) for 16 Months Increases Bone Formation and Density and Improves Trabecular Architecture and Biomechanical Properties at the Lumbar Spine,JOURNAL OF BONE AND MINERAL RESEARCH, Issue 2 2007John Fox PhD Abstract Histomorphometric studies of treatments for osteoporosis in humans are restricted to iliac crest biopsies. We studied the effects of PTH(1-84) treatment at the lumbar spine of skeletally mature ovariectomized rhesus monkeys. PTH increased bone turnover, rapidly normalized BMD, and increased vertebral compressive strength. PTH increased trabecular bone volume primarily by increasing trabecular number by markedly increasing intratrabecular tunneling. Introduction: Histomorphometric studies of the anabolic properties of PTH(1-84) (PTH) and related peptides in human bone are restricted to iliac crest biopsies. The ovariectomized (OVX) monkey is an accepted model of human postmenopausal bone loss and was used to study the effects of PTH treatment at clinically relevant skeletal sites. Materials and Methods: Skeletally mature rhesus monkeys were OVX or sham-operated and, after a bone depletion period of 9 months, treated daily for 16 months with PTH (5, 10, or 25 ,g/kg). Markers of bone formation (serum osteocalcin) and resorption (urine N-telopeptide [NTX]) and lumbar spine BMD were measured throughout the study. Trabecular architecture and vertebral biomechanical properties were quantified at 16 months. Results: PTH treatment induced dose-dependent increases in bone turnover but did not increase serum calcium. Osteocalcin was significantly increased above OVX controls by 1 month. NTX was significantly elevated at 1 month with the highest dose, but not until 12 months with the 5 and 10 ,g/kg doses. Lumbar spine BMD was 5% lower in OVX than in sham animals when treatment was started. All PTH doses increased BMD rapidly, with sham levels restored by 3,7 months with 10 and 25 ,g/kg and by 16 months with 5 ,g/kg. PTH treatment increased trabecular bone volume (BV/TV), primarily by increasing trabecular number, and dose-dependently increased bone formation rate (BFR) solely by increasing mineralizing surface. The largest effects on BV/TV and yield load occurred with the 10 ,g/kg dose. The highest dose reduced trabecular thickness by markedly increasing intratrabecular tunneling. Conclusions: PTH treatment of OVX rhesus monkeys increased bone turnover and increased BV/TV, BMD, and strength at the lumbar spine. All PTH doses were safe, but the 10 ,g/kg dose was generally optimal, possibly because the highest dose resulted in too marked a stimulation of bone remodeling. [source] A Nonprostanoid EP4 Receptor Selective Prostaglandin E2 Agonist Restores Bone Mass and Strength in Aged, Ovariectomized RatsJOURNAL OF BONE AND MINERAL RESEARCH, Issue 4 2006Hua Zhu Ke MD Abstract CP432 is a newly discovered, nonprostanoid EP4 receptor selective prostaglandin E2 agonist. CP432 stimulates trabecular and cortical bone formation and restores bone mass and bone strength in aged ovariectomized rats with established osteopenia. Introduction: The purpose of this study was to determine whether a newly discovered, nonprostanoid EP4 receptor selective prostaglandin E2 (PGE2) agonist, CP432, could produce bone anabolic effects in aged, ovariectomized (OVX) rats with established osteopenia. Materials and Methods: CP432 at 0.3, 1, or 3 mg/kg/day was given for 6 weeks by subcutaneous injection to 12-month-old rats that had been OVX for 8.5 months. The effects on bone mass, bone formation, bone resorption, and bone strength were determined. Results: Total femoral BMD increased significantly in OVX rats treated with CP432 at all doses. CP432 completely restored trabecular bone volume of the third lumbar vertebral body accompanied with a dose-dependent decrease in osteoclast number and osteoclast surface and a dose-dependent increase in mineralizing surface, mineral apposition rate, and bone formation rate-tissue reference in OVX rats. CP432 at 1 and 3 mg/kg/day significantly increased total tissue area, cortical bone area, and periosteal and endocortical bone formation in the tibial shafts compared with both sham and OVX controls. CP432 at all doses significantly and dose-dependently increased ultimate strength in the fifth lumber vertebral body compared with both sham and OVX controls. At 1 and 3 mg/kg/day, CP432 significantly increased maximal load in a three-point bending test of femoral shaft compared with both sham and OVX controls. Conclusions: CP432 completely restored trabecular and cortical bone mass and strength in established osteopenic, aged OVX rats by stimulating bone formation and inhibiting bone resorption on trabecular and cortical surfaces. [source] Ovariectomy-Induced Bone Loss Varies Among Inbred Strains of Mice,JOURNAL OF BONE AND MINERAL RESEARCH, Issue 7 2005Mary L Bouxsein PhD Abstract There is a subset of women who experience particularly rapid bone loss during and after the menopause. However, the factors that lead to this enhanced bone loss remain obscure. We show that patterns of bone loss after ovariectomy vary among inbred strains of mice, providing evidence that there may be genetic regulation of bone loss induced by estrogen deficiency. Introduction: Both low BMD and increased rate of bone loss are risk factors for fracture. Bone loss during and after the menopause is influenced by multiple hormonal factors. However, specific determinants of the rate of bone loss are poorly understood, although it has been suggested that genetic factors may play a role. We tested whether genetic factors may modulate bone loss subsequent to estrogen deficiency by comparing the skeletal response to ovariectomy in inbred strains of mice. Materials and Methods: Four-month-old mice from five inbred mouse strains (C3H/HeJ, BALB/cByJ, CAST/EiJ, DBA2/J, and C57BL/6J) underwent ovariectomy (OVX) or sham-OVX surgery (n = 6-9/group). After 1 month, mice were killed, and ,CT was used to compare cortical and trabecular bone response to OVX. Results: The effect of OVX on trabecular bone varied with mouse strain and skeletal site. Vertebral trabecular bone volume (BV/TV) declined after OVX in all strains (,15 to ,24%), except for C3H/HeJ. In contrast, at the proximal tibia, C3H/HeJ mice had a greater decline in trabecular BV/TV (,39%) than C57BL/6J (,18%), DBA2/J (,23%), and CAST/EiJ mice (,21%). OVX induced declines in cortical bone properties, but in contrast to trabecular bone, the effect of OVX did not vary by mouse strain. The extent of trabecular bone loss was greatest in those mice with highest trabecular BV/TV at baseline, whereas cortical bone loss was lowest among those with high cortical bone parameters at baseline. Conclusions: We found that the skeletal response to OVX varies in a site- and compartment-specific fashion among inbred mouse strains, providing support for the hypothesis that bone loss during and after the menopause is partly genetically regulated. [source] An Uncoupling Agent Containing Strontium Prevents Bone Loss by Depressing Bone Resorption and Maintaining Bone Formation in Estrogen-Deficient RatsJOURNAL OF BONE AND MINERAL RESEARCH, Issue 6 2005Pierre J. Marie Ph.D. Trabecular bone loss in estrogen deficiency is associated with enhanced bone resorption with a smaller increase in bone formation. We previously reported that low doses of strontium can increase trabecular bone volume in rodents by affecting bone resorption and formation. In this study we determined the effect of a new divalent strontium salt (S12911) on bone loss induced by E2 deficiency. Sprague-Dawley female rats (230 g, n = 15,25 per group) were sham operated or ovariectomized (OVX) and treated with 17,-estradiol (E2, 10 ,g/kg/day, sc) or S12911 by gavage at the dose of 77, 154, or 308 mg/kg/day or the vehicle. Treatment for 60 days with S12911 resulted in a dose-dependent increase in plasma, urine, and bone strontium concentrations without any deleterious effect on total or skeletal growth. OVX rats were osteopenic compared to sham rats as shown by decreased femoral dry bone weight and mineral content measured on bone ash and by DXA. Treatment of OVX rats with S12911 prevented bone loss as bone ash and bone mineral content were restored to the values in sham rats. Trabecular bone volume measured by histomorphometry on the tibial metaphysis was decreased by 46% in OVX rats and was corrected by E2. Treatment of OVX rats with S12911 increased the trabecular bone volume by 30,36%. Histomorphometric indices of bone resorption (osteoclast surface and number) were increased in OVX rats and were reduced by S12911 to the levels in sham rats. In contrast to this inhibitory effect on bone resorption, the osteoid surface, osteoblast surface, mineral apposition rate, and bone formation rate were as high in OVX rats treated with S12911 as in untreated OVX rats. In addition, plasma osteocalcin (OC) and alkaline phosphatase (ALP) levels remained elevated or were further increased in OVX rats treated with S12911. In contrast, treatment with E2 reduced both bone resorption and formation and plasma ALP and OC to the levels in sham rats. The data indicate that the divalent strontium salt S12911 is acting as an uncoupling agent that can prevent the femoral osteopenia and partially prevent the trabecular bone loss in E2-deficient rats by inhibiting bone resorption without reducing bone formation. [source] Long-Term Sensitivity of Uterus and Hypothalamus/Pituitary Axis to 17,-Estradiol Is Higher Than That of Bone in Rats,JOURNAL OF BONE AND MINERAL RESEARCH, Issue 11 2004Reinhold G Erben MD Abstract We examined the long-term sensitivity of uterus and bone to low-dose 17,-estradiol in a 4-month experiment in OVX rats and found that a dose of estradiol that fully protected against uterine atrophy did not protect against bone loss. Our results suggest higher estrogen sensitivity of the uterus compared with bone. Introduction: Estrogen is essential for the function of reproductive tissues and for the normal acquisition and maintenance of bone mass in females. This study was designed to examine the long-term sensitivity of the uterus and bone to low-dose estrogen. Materials and Methods: In preliminary experiments, we determined the lowest subcutaneous dose of 17,-estradiol able to fully protect against uterine atrophy in ovariectomized (OVX) rats. This dose was found to be 1.5 ,g/kg, given five times per week. Subsequently, groups of sham-operated (SHAM) or OVX 6-month-old rats (n = 8 each) were subcutaneously injected with vehicle or 1.5 ,g/kg 17,-estradiol five times per week. All animals were killed 4 months after surgery. Serum osteocalcin and urinary deoxypyridinoline were measured as biochemical markers of bone turnover. Bones were analyzed by bone histomorphometry and pQCT. Results and Conclusions: Our study clearly showed that a dose of estradiol that restores physiological estradiol serum levels, fully maintains uterine weight in OVX rats at the SHAM control level, and suppresses serum follicle-stimulating hormone (FSH) by 67% relative to OVX vehicle controls does not provide significant protection against OVX-induced bone loss at different cancellous and cortical bone sites. We conclude that the long-term sensitivity of the uterus and the hypothalamus/pituitary axis to 17,-estradiol is higher than that of bone in rats. [source] Tower Climbing Exercise Started 3 Months After Ovariectomy Recovers Bone Strength of the Femur and Lumbar Vertebrae in Aged Osteopenic Rats,JOURNAL OF BONE AND MINERAL RESEARCH, Issue 1 2003Takuya Notomi Abstract To determine both the preventive and recovery effects of tower climbing exercise on mass, strength, and local turnover of bone in ovariectomized (OVX) rats, we carried out two experiments. In experiment I, 60 Sprague-Dawley rats, 12 months of age, were assigned to four groups: a Baseline Control, Sham-Operated Sedentary, OVX-Sedentary and OVX-Exercise rats. Rats voluntarily climbed a 200-cm tower to drink water from a bottle set at the top. At 3 months, OVX elevated both the femoral cortex and lumbar trabecular turnover, leading to a reduction in bone mass and strength. However, in OVX-Exercise rats, those values were maintained at the same level as in the Sham-Sedentary rats. Thus, the climbing exercise, started after 3 days of OVX, prevented OVX-induced cortical and trabecular bone loss by depressing turnover elevation. After confirming the preventive effect, we evaluated the recovery effect of exercise. In experiment II, 90 Sprague-Dawley rats, 12 months of age, were assigned to six groups: a Baseline control, two groups of Sham-Operated Sedentary and OVX-Sedentary, and OVX-Exercise rats. The exercise started 3 months after the OVX operation. At 3 months, OVX increased the trabecular bone formation rate and osteoclast surface, leading to a decrease in compressive strength. In the midfemur, the cross-sectional area, moment of inertia, and bending load values decreased. At 6 months, in the OVX-Exercise rats, the parameters of breaking load in both the lumbar and midfemur, lumbar bone mass, and the total cross-sectional area recovered to the same levels as those in the Sham-Sedentary rats. However, the cortical bone area did not recover. Periosteal bone formation increased, while endosteal bone formation decreased. These results showed that the climbing exercise had both a preventive and recovery effect on bone strength in OVX rats. In the mid-femur, effects on bone formation were site-specific, and the cross-sectional morphology was improved without an increase in cortical bone area, supporting cortical drift by mechanical stimulation. [source] Long-Term Dosing of Arzoxifene Lowers Cholesterol, Reduces Bone Turnover, and Preserves Bone Quality in Ovariectomized Rats,,JOURNAL OF BONE AND MINERAL RESEARCH, Issue 12 2002Yanfei L. Ma M.D. Abstract Long-term effects of a new selective estrogen receptor modulator (SERM) arzoxifene were examined in ovariectomized (OVX) rats. Arzoxifene was administered postoperatively (po) at 0.1 mg/kg per day or 0.5 mg/kg per day to 4-month-old rats, starting 1 week after OVX for 12 months. At study termination, body weights for arzoxifene groups were 16,17% lower than OVX control, which was caused by mainly reduced gain of fat mass. Longitudinal analysis of the proximal tibial metaphysis (PTM) by computed tomography (CT) at 0, 2, 4, 6, 9, and 12 months showed that OVX induced a 22% reduction in bone mineral density (BMD) at 2 months, which narrowed to a 12% difference between sham-operated (sham) and OVX rats by 12 months. Both doses of arzoxifene prevented the OVX-induced decline in BMD. Histomorphometry of the PTM showed that arzoxifene prevented bone loss by reducing osteoclast number in OVX rats. Arzoxifene maintained bone formation indices at sham levels and preserved trabecular number above OVX controls. Micro-CT analysis of lumbar vertebrae showed similar preservation of BMD compared with OVX, which were not different from sham. Compression testing of the vertebra and three-point bending testing of femoral shaft showed that strength and toughness were higher for arzoxifene-treated animals compared with OVX animals. Arzoxifene reduced serum cholesterol by 44,59% compared with OVX. Uteri wet weight from arzoxifene animals was 38,40% of sham compared with OVX rats, which were 29% of sham. Histology of the uterine endometrium showed that cell heights from both doses of arzoxifene were not significantly different from OVX controls. In summary, treatment of OVX rats with arzoxifene for nearly one-half of a lifetime maintained beneficial effects on cholesterol and the skeleton. These data suggest that arzoxifene may be a useful therapeutic agent for osteoporosis in postmenopausal women. [source] Risedronate Preserves Trabecular Architecture and Increases Bone Strength in Vertebra of Ovariectomized Minipigs as Measured by Three-Dimensional Microcomputed Tomography,,JOURNAL OF BONE AND MINERAL RESEARCH, Issue 7 2002Babul Borah Ph.D. Abstract Risedronate reduces the risk of new vertebral fractures up to 70% within 1 year of treatment in patients with osteoporosis. Both increases in bone mass and preservation of bone architecture are thought to contribute to antifracture effects. Our objectives were to determine the effects of risedronate on trabecular bone mass and architecture and to determine the relative contributions of mass and architecture to strength in the vertebra of ovariectomized (OVX) minipigs. The minipigs were OVX at 18 months of age and were treated daily for 18 months with either vehicle or risedronate at doses of 0.5 mg/kg per day or 2.5 mg/kg per day. The three-dimensional (3D) bone architecture of the L4 vertebral cores of Sinclair S1 minipigs was evaluated by 3D microcomputed tomography (,CT). Compared with the OVX control, the vertebral bone volume (bone volume/tissue volume [BV/TV]) was higher in both treated groups (p < 0.05). The architectural changes were more significant at the 2.5-mg/kg dose and were more prevalent at the cranial-caudal ends compared with the midsection. At the higher dose, the trabecular thickness (Tb.Th), trabecular number (Tb.N), and connectivity were higher, and marrow star volume (Ma.St.V) and trabecular separation (Tb.Sp) were lower (p < 0.05). The trabecular separation variation index(TSVI), a new measure to approximate structural variations, was smaller in the 2.5-mg/kg-treated group (p < 0.05). In this group, a significant preservation of trabeculae orthogonal to the cranial-caudal axis was confirmed by a decrease in the degree of anisotropy (DA) and an increase in the percent Cross-strut (%Cross-strut; p < 0.05). Both normalized maximum load (strength) and normalized stiffness of the same vertebral cores were higher in the 2.5-mg/kg risedronate group compared with the OVX group (p < 0.05). BV/TV alone could explain 76% of the variability of the bone strength. The combination of bone volume and architectural variables explained >90% of the strength. The study showed that risedronate preserved trabecular architecture in the vertebra of OVX minipigs, and that bone strength is tightly coupled to bone mass and architecture. [source] Vitamin D Hormone Inhibits Osteoclastogenesis In Vivo by Decreasing the Pool of Osteoclast Precursors in Bone MarrowJOURNAL OF BONE AND MINERAL RESEARCH, Issue 4 2002Takeshi Shibata Abstract Previous observations that vitamin D hormone induces the expression of the receptor activator of nuclear factor ,B (NF-,B) ligand (RANKL), thereby stimulating osteoclastogenesis in vitro, led to the widespread belief that 1,,25-dihydroxyvitamin D3 [1,,25(OH)2D3] is a bone-resorbing hormone. Here, we show that alfacalcidol, a prodrug metabolized to 1,,25(OH)2D3, suppresses bone resorption at pharmacologic doses that maintain normocalcemia in an ovariectomized (OVX) mouse model of osteoporosis. Treatment of OVX mice with pharmacologic doses of alfacalcidol does not increase RANKL expression, whereas toxic doses that cause hypercalcemia markedly reduce the expression of RANKL. When bone marrow (BM) cells from OVX mice were cultured with sufficient amounts of macrophage colony-stimulating factor (M-CSF) and RANKL, osteoclastogenic activity was higher than in sham mice. Marrow cultures from alfacalcidol- or estrogen-treated OVX mice showed significantly less osteoclastogenic potential compared with those from vehicle-treated OVX mice, suggesting that the pool of osteoclast progenitors in the marrow of vitamin D-treated mice as well as estrogen-treated mice was decreased. Frequency analysis showed that the number of osteoclast progenitors in bone marrow was increased by OVX and decreased by in vivo treatment with alfacalcidol or estrogen. We conclude that the pharmacologic action of active vitamin D in vivo is to decrease the pool of osteoclast progenitors in BM, thereby inhibiting bone resorption. Because of its unusual activity of maintaining bone formation while suppressing bone resorption, in contrast to estrogens that depress both processes, vitamin D hormone and its bone-selective analogs may be useful for the management of osteoporosis. [source] Tibolone Exerts Its Protective Effect on Trabecular Bone Loss Through the Estrogen ReceptorJOURNAL OF BONE AND MINERAL RESEARCH, Issue 9 2001A. G. H. Ederveen Abstract Tibolone (Org OD14) has estrogenic, progestogenic, and/or androgenic activity depending on the tissue. In postmenopausal women, tibolone prevents bone loss without stimulating the endometrium. Tibolone is effective in preventing trabecular bone loss from the peripheral and axial skeleton of young and old ovariectomized (OVX) rats by reducing bone turnover, that is, bone resorption, like estrogens. We evaluated the contribution of the various hormonal activities to tibolone's bone-conserving effect. Three-month-old OVX rats received tibolone (125 ,g/rat or 500 ,g/rat, twice daily), alone or combined with an antiestrogen, antiandrogen, or antiprogestogen, and the effects on trabecular bone mass and bone turnover were evaluated. Sham-operated and control OVX groups were treated with vehicle. The remaining OVX groups received oral doses of tibolone twice daily, alone or with twice daily (a) antiestrogen ICI 164.384, (b) antiandrogen flutamide, or (c) antiprogestogen Org 31710. For comparison, the effects of 17,-estradiol and testosterone were examined also. After 4 weeks, trabecular bone mineral density (BMD) in the distal femur, plasma osteocalcin, and urinary deoxypyridinoline/creatinine ratio (Dpyr/Cr) were measured. Tibolone or 17,-estradiol significantly blocked ovariectomy-induced loss of trabecular BMD and inhibited bone resorption and bone turnover as judged by reduced Dpyr/Cr ratio and osteocalcin, respectively. These effects of both compounds were counteracted by the antiestrogen. This suggests a major involvement of the estrogen receptor in the action of tibolone on bone metabolism. However, the antiandrogen and the antiprogestogen did not counteract the effects of tibolone, excluding a major role of the androgenic and progestogenic activities of tibolone in its action against trabecular bone loss. The results indicate that tibolone acts on bone almost entirely through activation of the estrogen receptor. [source] Effects of a New Selective Estrogen Receptor Modulator (MDL 103,323) on Cancellous and Cortical Bone in Ovariectomized Ewes: A Biochemical, Histomorphometric, and Densitometric StudyJOURNAL OF BONE AND MINERAL RESEARCH, Issue 1 2001Pascale Chavassieux Abstract The aims of this study performed in ewes were: (1) to confirm in this animal model the effects on bone of ovariectomy (OVX) alone or associated with Lentaron (L), a potent peripheral aromatase inhibitor, used to amplify the effects of OVX and (2) to evaluate the effects of a new selective estrogen receptor modulator (SERM; MDL 103,323) on bone remodeling. Thirty-nine old ewes were divided into five groups: sham (n = 7); OVX (n = 8); OVX + L (n = 8); OVX + L + MDL; 0.1 mg/kg per day (n = 8); and OVX + L + MDL 1 mg/kg per day (n = 8). The animals were treated for 6 months. Biochemical markers of bone turnover (urinary excretion of type 1 collagen C-telopeptide [CTX], serum osteocalcin [OC], and bone alkaline phosphatase [BAP]) were measured each month. Bone biopsy specimens were taken at the beginning and after death at the end of the experiment. Bone mineral density (BMD) was measured by dual-energy X-ray absorptiometry (DXA) on the lumbar spine and femur. OVX induced a significant increase in biochemical markers. This effect was the highest after 3 months for CTX (+156% vs. sham) and after 4 months for OC and BAP (+74% and +53% vs. sham, respectively). L tended to amplify the effect of OVX on OC and BAP. OVX induced significant increases in the porosity, eroded, and osteoid surfaces in cortical bone but no effect was observed in cancellous bone. MDL treatment reduced the bone turnover as assessed by bone markers, which returned to sham levels as well as histomorphometry both in cortical and in cancellous bone. Cancellous osteoid thickness decreased by 27% (p < 0.05), mineralizing perimeter by 81% (p < 0.05), and activation frequency by 84% (p < 0.02) versus OVX + L. Femoral and spinal BMD were increased by MDL and tended to return to the sham values. The effects of OVX on bone turnover were different on cortical and cancellous bone. These effects on cortical bone were reflected by changes in biochemical markers. MDL markedly reduces bone turnover and increases BMD suggesting that this new agent may prevent postmenopausal bone loss. [source] Intermittently Administered Human Parathyroid Hormone(1,34) Treatment Increases Intracortical Bone Turnover and Porosity Without Reducing Bone Strength in the Humerus of Ovariectomized Cynomolgus MonkeysJOURNAL OF BONE AND MINERAL RESEARCH, Issue 1 2001David B. Burr Abstract Cortical porosity in patients with hyperparathyroidism has raised the concern that intermittent parathyroid hormone (PTH) given to treat osteoporotic patients may weaken cortical bone by increasing its porosity. We hypothesized that treatment of ovariectomized (OVX) cynomolgus monkeys for up to 18 months with recombinant human PTH(1,34) [hPTH(1,34)] LY333334 would significantly increase porosity in the midshaft of the humerus but would not have a significant effect on the strength or stiffness of the humerus. We also hypothesized that withdrawal of PTH for 6 months after a 12-month treatment period would return porosity to control OVX values. OVX female cynomolgus monkeys were given once daily subcutaneous (sc) injections of recombinant hPTH(1,34) LY333334 at 1.0 ,g/kg (PTH1), 5.0 ,g/kg (PTH5), or 0.1 ml/kg per day of phosphate-buffered saline (OVX). Sham OVX animals (sham) were also given vehicle. After 12 months, PTH treatment was withdrawn from half of the monkeys in each treatment group (PTH1-W and PTH5-W), and they were treated for the remaining 6 months with vehicle. Double calcein labels were given before death at 18 months. After death, static and dynamic histomorphometric measurements were made intracortically and on periosteal and endocortical surfaces of sections from the middiaphysis of the left humerus. Bone mechanical properties were measured in the right humeral middiaphysis. PTH dose dependently increased intracortical porosity. However, the increased porosity did not have a significant detrimental effect on the mechanical properties of the bone. Most porosity was concentrated near the endocortical surface where its mechanical effect is small. In PTH5 monkeys, cortical area (Ct.Ar) and cortical thickness (Ct.Th) increased because of a significantly increased endocortical mineralizing surface. After withdrawal of treatment, porosity in PTH1-W animals declined to sham values, but porosity in PTH5-W animals remained significantly elevated compared with OVX and sham. We conclude that intermittently administered PTH(1,34) increases intracortical porosity in a dose-dependent manner but does not reduce the strength or stiffness of cortical bone. [source] Cloning, Sequencing, and Functional Characterization of the Rat Homologue of Receptor Activator of NF-,B Ligand,JOURNAL OF BONE AND MINERAL RESEARCH, Issue 11 2000Jiake Xu Abstract A complementary DNA (cDNA) encoding the rat homologue of receptor activator of NF-,B ligand/osteoprotegerin ligand/osteoclast differentiation factor/tumor necrosis factor (TNF)-related activation-induced cytokine (RANKL/OPGL/ODF/TRANCE) was cloned and sequenced from tibias of ovariectomized (OVX) rats. The predicted amino acid sequence of rat RANKL (rRANKL) has 84% and 96% identity to that of human and mouse RANKL, respectively, and 35% and 37% similarity to that of human and mouse TNF-related apoptosis-inducing ligand (TRAIL), respectively. RANKL transcripts were expressed abundantly in the thymus and bone tissues of OVX rats. rRANKL has a single hydrophobic region between residues 53 and 69, which is most likely to serve as a transmembrane domain. The long C-terminal region containing ,-sheet-forming sequences of the TNF-like core is considered the extracellular region. Three truncated domains within the TNF-like core region were expressed as glutathione S-transferase (GST) fusion proteins and investigated for their ability to induce osteoclastogenesis. The results showed that GST-rRANKL (aa160-318) containing the full TNF-like core region had the highest capability to induce the formation of osteoclast-like cells from RAW264.7 cells. GST-rRANKL (aa239-318 and aa160-268) had lesser degrees of osteoclast inductivity. Furthermore, the GST-rRANKL (aa160-318) is capable of (1) inducing osteoclast formation from rat spleen cells in the presence of macrophage colony-stimulating factor (M-CSF), (2) stimulating mature rat osteoclast polarization and bone resorption ex vivo, and (3) inducing systemic hypercalcemia in vivo; thus the full TNF-like core region of rRANKL is an important regulator of calcium homeostasis and osteoclastic function. [source] Rutin Inhibits Ovariectomy-Induced Osteopenia in RatsJOURNAL OF BONE AND MINERAL RESEARCH, Issue 11 2000Marie-Noëlle Horcajada-Molteni Abstract Several studies suggest that polyphenols might exert a protective effect against osteopenia. The present experiment was conducted to observe the effects of rutin (quercetin-3- O -glucose rhamnose) on bone metabolism in ovariectomized (OVX) rats. Thirty 3-month-old Wistar rats were used. Twenty were OVX while the 10 controls were sham-operated (SH). Among the 20 OVX, for 90 days after surgery 10 were fed the same synthetic diet as the SH or OVX ones, but 0. 25% rutin (OVX + R) was added. At necropsy, the decrease in uterine weight was not different in OVX and OVX + R rats. Ovariectomy also induced a significant decrease in both total and distal metaphyseal femoral mineral density, which was prevented by rutin consumption. Moreover, femoral failure load, which was not different in OVX and SH rats, was even higher in OVX + R rats than in OVX or SH rats. In the same way, on day 90, both urinary deoxypyridinoline (DPD) excretion (a marker for bone resorption) and calciuria were higher in OVX rats than in OVX + R or SH rats. Simultaneously, plasma osteocalcin (OC) concentration (a marker for osteoblastic activity) was higher in OVX + R rats than in SH rats. High-performance liquid chromatography (HPLC) profiles of plasma samples from OVX + R rats revealed that mean plasma concentration of active metabolites (quercetin and isorhamnetin) from rutin was 9.46 + 1 ,M, whereas it was undetectable in SH and OVX rats. These results indicate that rutin (and/or its metabolites), which appeared devoid of any uterotrophic activity, inhibits ovariectomy-induced trabecular bone loss in rats, both by slowing down resorption and increasing osteoblastic activity. [source] Mice Lacking the Plasminogen Activator Inhibitor 1 Are Protected from Trabecular Bone Loss Induced by Estrogen DeficiencyJOURNAL OF BONE AND MINERAL RESEARCH, Issue 8 2000E. Daci Abstract Bone turnover requires the interaction of several proteases during the resorption phase. Indirect evidence suggests that the plasminogen activator/plasmin pathway is involved in bone resorption and turnover, and recently we have shown that this cascade plays a role in the degradation of nonmineralized bone matrix in vitro. To elucidate the role of the plasminogen activator inhibitor 1 (PAI-1) in bone turnover in vivo, bone metabolism was analyzed in mice deficient in the expression of PAI-1 gene (PAI-1,/,) at baseline (8-week-old mice) and 4 weeks after ovariectomy (OVX) or sham operation (Sham) and compared with wild-type (WT) mice. PAI-1 inactivation was without any effect on bone metabolism at baseline or in Sham mice. However, significant differences were observed in the response of WT and PAI-1,/, mice to ovariectomy. The OVX WT mice showed, as expected, decreased trabecular bone volume (BV/TV) and increased osteoid surface (OS/BS) and bone formation rate (BFR), as assessed by histomorphometric analysis of the proximal tibial metaphysis. In contrast, no significant change in any of the histomorphometric variables studied was detected in PAI-1,/, mice after ovariectomy. As a result, the OVX PAI-1,/, had a significantly higher BV/TV, lower OS/BS, lower mineral apposition rate (MAR) and BFR when compared with the OVX WT mice. However, a comparable decrease in the cortical thickness was observed in OVX PAI-1,/, and WT mice. In addition, the cortical mineral content and density assessed in the distal femoral metaphysis by peripheral quantitative computed tomography (pQCT), decreased significantly after ovariectomy, without difference between PAI-1,/, mice and WT mice. In conclusion, basal bone turnover and bone mass are only minimally affected by PAI-1 inactivation. In conditions of estrogen deficiency, PAI-1 inactivation protects against trabecular bone loss but does not affect cortical bone loss, suggesting a site-specific role for PAI-1 in bone turnover. [source] Prostaglandin E2 Induces Expression of Receptor Activator of Nuclear Factor,,B Ligand/Osteoprotegrin Ligand on Pre-B Cells: Implications for Accelerated Osteoclastogenesis in Estrogen DeficiencyJOURNAL OF BONE AND MINERAL RESEARCH, Issue 7 2000Masahiro Kanematsu Abstract Estrogen deficiency causes bone loss as a result of accelerated osteoclastic bone resorption. It also has been reported that estrogen deficiency is associated with an increase in the number of pre-B cells in mouse bone marrow. The present study was undertaken to clarify the role of altered B lymphopoiesis and of the receptor activator of nuclear factor-,B ligand (RANKL), a key molecule in osteoclastogenesis, in the bone loss associated with estrogen deficiency. In the presence of prostaglandin E2 (PGE2), the activity to form tartrate-resistant acid phosphatase (TRAP)-positive osteoclast-like cells was significantly greater in bone marrow cells derived from ovariectomized (OVX) mice than in those from sham-operated mice. Northern blot analysis revealed that PGE2 increased the amount of RANKL messenger RNA (mRNA) in bone marrow cells, not only adherent stromal cells but nonadherent hematopoietic cells; among the latter, RANKL mRNA was more abundant in OVX mice than in sham-operated mice and was localized predominantly in B220+ cells. Flow cytometry revealed that most B220+ cells in bone marrow were RANKL positive and that the percentage of RANKL-positive, B220low cells was higher in bone marrow from OVX mice than in that from sham-operated mice. The increase in the expression of RANKL and the percentage of these cells in OVX mice was abolished by the administration of indomethacin in vivo. PGE2 also markedly increased both the level of RANKL mRNA and cell surface expression of RANKL protein in the mouse pre-B cell line 70Z/3. Finally, osteoclastogenic response to PGE2 was reduced markedly by prior depletion of B220+ cells, and it was restored by adding back B220+ cells. Taken together with stimulated cyclo-oxygenase (COX)-2 activity by tumor necrosis factor , (TNF-,) and interleukin-1 (IL-1) in estrogen deficiency, these results suggest that an increase in the number of B220+ cells in bone marrow may play an important role in accelerated bone resorption in estrogen deficiency because B220+ cells exhibit RANKL on the cell surface in the presence of PGE2, thereby leading to accelerated osteoclastogenesis. [source] Protein Undernutrition-Induced Bone Loss Is Associated with Decreased IGF-I Levels and Estrogen DeficiencyJOURNAL OF BONE AND MINERAL RESEARCH, Issue 4 2000Patrick Ammann M.D. Abstract Protein undernutrition is a known factor in the pathogenesis of osteoporotic fracture in the elderly, but the mechanisms of bone loss resulting from this deficiency are still poorly understood. We investigated the effects of four isocaloric diets with varying levels of protein content (15, 7.5, 5, and 2.5% casein) on areal bone mineral density (BMD), bone ultimate strength, histomorphometry, biochemical markers of bone remodeling, plasma IGF-I, and sex hormone status in adult female rats. After 16 weeks on a 2.5% casein diet, BMD was significantly decreased at skeletal sites containing trabecular or cortical bone. Plasma IGF-I was decreased by 29,34% and no estrus sign in vaginal smear was observed. To investigate the roles of estrogen deficiency and protein undernutrition, the same protocol was used in ovariectomized (OVX) or sham-operated (SHAM) rats, pair-fed isocaloric diets containing either 15 or 2.5% casein. Trabecular BMD was decreased by either manipulation, with effects appearing to be additive. Cortical BMD was decreased only in rats on a low-protein diet. This was accompanied by an increased urinary deoxypyridinoline excretion without any change in osteocalcin levels, suggesting an uncoupling between resorption and formation. Isocaloric protein undernutrition decreased bone mineral mass and strength. This effect might be related to decreased plasma IGF-I and/or estrogen deficiency with a consequent imbalance in bone remodeling. [source] Effects of Estrogen on Cardiac Electrophysiology in Female MiceJOURNAL OF CARDIOVASCULAR ELECTROPHYSIOLOGY, Issue 3 2002SAMIR SABA M.D. Estrogen and Cardiac Electrophysiology.Introduction: Understanding the molecular mechanisms that underlie gender- and hormonal-related differences in susceptibility to cardiac arrhythmias has been hampered by the lack of a suitable animal model. We examined the effect of hormonal status on the electrophysiologic (EP) properties of the mouse heart in an in vivo, closed chest model. Methods and Results: Fifty-three female C57/J mice aged 10 to 12 weeks were studied. Thirty-six mice underwent bilateral ovariectomies; 18 received estrogen (OVX + E) and 18 received placebo (OVX). Seventeen female mice underwent only sham surgery. All animals underwent in vivo EP studies. Select EP parameters were measured after quinidine treatment. Data were analyzed by a blinded observer. Compared with the intact female mice, the PR and AH intervals were significantly shorter in the OVX mice, and these parameters normalized with estrogen replacement (PR = 45.9 ± 4.5 msec in the intact mice, 42.1 ± 4.3 msec in the OVX group, and 46.9 ± 3.5 msec in the OVX + E group, P < 0.005; AH = 36.5 ± 4.9 msec in the intact mice, 34.4 ± 4.7 msec in the OVX group, and 38.8 ± 2.7 msec in the OVX + E group, P = 0.03). The right ventricular effective refractory period was significantly shorter in the OVX mice versus the intact mice, and this also normalized with estrogen replacement. Hormonal status did not significantly affect any other EP variable, including QT interval. Conclusion: In female mice, estrogen prolongs AV nodal conduction and the right ventricular effective refractory period. Taken together, these data suggest that hormonal status affects aspects of cardiac EP function. Future application of this mouse model will be helpful in determining the molecular pathways that mediate hormonal differences in cardiac EP. [source] Effects of long-term administration of N-3 polyunsaturated fatty acids (PUFA) and selective estrogen receptor modulator (SERM) derivatives in ovariectomized (OVX) miceJOURNAL OF CELLULAR BIOCHEMISTRY, Issue 2 2003L. Zeitlin Abstract We studied the beneficial effects of dietary consumption of n-3 polyunsaturated fatty acids (PUFA) and two selective estrogen receptor modulator (SERM) derivatives (SERM-I and SERM-II) and their combined effect on serum lipids, skin dermis and adipose layers, bone marrow adipogenesis, and cytokine secretion in mice. Two different ovariectomized (OVX) models were studied: treatment began immediately post-OVX in one and 3 months post-OVX in the other. Our results showed that n-3 PUFA and both SERMs decreased triglyceride levels in the serum, and that SERMs also decreased serum cholesterol levels while n-3 PUFA had no similar effect. SERMs had no effect on IL-6, IL-1 beta, or IL-10 levels, but they decreased ex vivo tumor necrosis factor (TNF-,). N-3 PUFA decreased secretion of non-induced IL-6 and TNF-, from cultured BMC and IL-1 beta levels in vivo (i.e., in bone marrow plasma), but its main effect was a significant elevation in the secretion of IL-10, a known anti-inflammatory cytokine. OVX-induced B-lymphopoiesis was not affected by LY-139481 (SERM-I) while LY-353381 (SERM-II) exhibited an estrogen-antagonistic effect in sham and OVX mice and elevated the amount of B-cells in bone marrow. Fish oil consumption prevented the elevation in B-lymphopoiesis caused by OVX, but had no curative effect on established augmented B-lymphopoiesis. This activity could be mediated via the elevation of IL-10 which was shown to suppress B-lymphopoiesis. Both SERMs and n-3 PUFA inhibited the increase in adipose tissue thickness caused by OVX in mice. Our results showed that n-3 PUFA, could prevent some of the deleterious outcomes of estrogen deficiency that were not affected by SERMs. We observed no significant beneficial effects of the combined administration of SERM-I, SERM-II, and PUFA on the studied parameters. The exact mechanism by which polyunsaturated fatty acids exert their activities is still not clear, but peroxisome proliferator-activated receptors (PPARs) might be involved in processes which are modulated by n-3 PUFA. J. Cell. Biochem. 90: 347,360, 2003. © 2003 Wiley-Liss, Inc. [source] Estrogen modulates estrogen receptor , and , expression, osteogenic activity, and apoptosis in mesenchymal stem cells (MSCs) of osteoporotic miceJOURNAL OF CELLULAR BIOCHEMISTRY, Issue S36 2001Shuanhu Zhou Abstract In the mouse, ovariectomy (OVX) leads to significant reductions in cancellous bone volume while estrogen (17,-estradiol, E2) replacement not only prevents bone loss but can increase bone formation. As the E2-dependent increase in bone formation would require the proliferation and differentiation of osteoblast precursors, we hypothesized that E2 regulates mesenchymal stem cells (MSCs) activity in mouse bone marrow. We therefore investigated proliferation, differentiation, apoptosis, and estrogen receptor (ER) , and , expression of primary culture MSCs isolated from OVX and sham-operated mice. MSCs, treated in vitro with 10,7 M E2, displayed a significant increase in ER, mRNA and protein expression as well as alkaline phosphatase (ALP) activity and proliferation rate. In contrast, E2 treatment resulted in a decrease in ER, mRNA and protein expression as well as apoptosis in both OVX and sham mice. E2 up-regulated the mRNA expression of osteogenic genes for ALP, collagen I, TGF-,1, BMP-2, and cbfa1 in MSCs. In a comparison of the relative mRNA expression and protein levels for two ER isoforms, ER, was the predominant form expressed in MSCs obtained from both OVX and sham-operated mice. Cumulatively, these results indicate that estrogen in vitro directly augments the proliferation and differentiation, ER, expression, osteogenic gene expression and, inhibits apoptosis and ER, expression in MSCs obtained from OVX and sham-operated mice. Co-expression of ER,, but not ER,, and osteogenic differentiation markers might indicate that ER, function as an activator and ER, function as a repressor in the osteogenic differentiation in MSCs. These results suggest that mouse MSCs are anabolic targets of estrogen action, via ER, activation. J. Cell. Biochem. Suppl. 36: 144,155, 2001. © 2001 Wiley-Liss, Inc. [source] Noradrenaline Involvement in the Negative-Feedback Effects of Ovarian Steroids on Luteinising Hormone SecretionJOURNAL OF NEUROENDOCRINOLOGY, Issue 10 2009C. V. V. Helena Noradrenaline has been shown to modulate the ovarian-steroid feedback on luteinising-hormone (LH) release. However, despite the high amount of evidence accumulated over many years, the role of noradrenaline in LH regulation is still not clearly understood. The present study aimed to further investigate the involvement of noradrenaline in the negative-feedback effect of oestradiol and progesterone on basal LH secretion. In experiment 1, ovariectomised (OVX) rats received a single injection of oil, oestradiol, or progesterone at 09.00,10.00 h and were decapitated 30 or 60 min later. Levels of noradrenaline and its metabolite, 3-methoxy-4-hydroxyphenylglycol (MHPG), were determined in microdissections of the preoptic area (POA) and medial basal hypothalamus-median eminence (MBH-ME) and correlated with LH secretion. Basal LH levels were decreased 30 and 60 min after oestradiol or progesterone injection, and this hormonal response was significantly correlated with a reduction in POA MHPG levels, which reflect noradrenaline release. In addition, noradrenaline levels in the POA were increased, whereas noradrenaline turnover (MHPG/noradrenaline ratio) was decreased 60 min after the injection of both hormones. No effect was found in the MBH-ME. In experiment 2, i.c.v. administration of noradrenaline (60 nmol), performed 15 min before oestradiol or progesterone injection in jugular vein-cannulated OVX rats, completely prevented the ovarian steroid-induced inhibition of LH secretion. The data obtained provide direct evidence that LH secretion in OVX rats is positively regulated by basal noradrenergic activity in the POA, and its reduction appears to play a role in the negative-feedback effect of ovarian steroids on LH secretion in vivo. [source] Possible Role of Oestrogen in Pubertal Increase of Kiss1/Kisspeptin Expression in Discrete Hypothalamic Areas of Female RatsJOURNAL OF NEUROENDOCRINOLOGY, Issue 6 2009K. Takase Kisspeptin, a peptide encoded by the Kiss1 gene, has been considered as a potential candidate for a factor triggering the onset of puberty, and its expression in the hypothalamus was found to increase during peripubertal period in rodent models. The present study aimed to clarify the oestrogenic regulation of peripubertal changes in Kiss1 mRNA expression in the anteroventral periventricular nucleus (AVPV) and hypothalamic arcuate nucleus (ARC), and to determine which population of kisspeptin neurones shows a change in kisspeptin expression parallel to that in luteinising hormone (LH) pulses at the peripubertal period. Quantitative reverse transcriptase-polymerase chain reaction and immunohistochemistry revealed an apparent increase in the ARC Kiss1 mRNA expression and kisspeptin immunoreactivity around the time of vaginal opening in intact female rats. The AVPV Kiss1 mRNA levels also increased at day 26, but decreased at day 31, and then increased at day 36/41. In ovariectomised (OVX) rats, ARC Kiss1 mRNA expression did not show peripubertal changes and was kept at a high level throughout peripubertal periods. Apparent LH pulses were found in these prepubertal OVX rats. Oestradiol replacement suppressed ARC Kiss1 mRNA expression in OVX prepubertal rats, but not in adults. Similarly, LH pulses were suppressed by oestradiol in the prepubertal period (days 21 and 26), but regular pulses were found in adulthood. The present study suggests that a pubertal increase of Kiss1/kisspeptin expression both in the ARC and AVPV is involved in the onset of puberty. These results also suggest that both LH pulses and ARC Kiss1 expression are more negatively regulated by oestrogen in prepubertal female rats compared to adult rats. [source] KiSS-1 and GPR54 Genes are Co-Expressed in Rat Gonadotrophs and Differentially Regulated In Vivo by Oestradiol and Gonadotrophin-Releasing HormoneJOURNAL OF NEUROENDOCRINOLOGY, Issue 3 2008N. Richard Kisspeptin, the product derived from KiSS-1, and its cognate receptor, GPR54, both exert a role in the neuroendocrine control of reproduction by regulating gonadotrophin-releasing hormone (GnRH) secretion. In the present study, we demonstrate, using dual immunofluorescence with specific antibodies, that the KiSS-1 and GPR54 genes are both expressed in rat gonadotrophs. All luteinising hormone ,-immunoreactive (LH,-ir) cells were stained by the KiSS-1 antibody but some kisspeptin-ir cells were not LH, positive; thus, we cannot exclude the possibility that kisspeptins are expressed in other pituitary cells. All GPR54-ir are co-localised with LH, cells, but only a subset of LH, cells are stained with the GPR54 antibody. Using the real-time reverse transcription-polymerase chain reaction (RT-PCR), we found that the expression of KiSS-1 and GPR54 is differentially regulated by steroids. In the female, KiSS-1 mRNA levels dramatically decreased following ovariectomy (OVX), and this decrease was prevented by administration of 17,-oestradiol (E2), but not by administration of GnRH antagonist or agonist. Administration of E2 in OVX rats receiving either GnRH antagonist or agonist clearly shows that E2 acts directly on the pituitary to positively control KiSS-1 expression. In OVX rats, administration of the selective oestrogen receptor (ER), ligand propylpyrazoletriol, but not the selective ER, ligand diarylpropionitrile, mimics this effect. By contrast, our study shows that GPR54 expression is positively regulated by GnRH and negatively controlled by chronic exposure to E2. In summary, our data document for the first time that, in the female rat pituitary, KiSS-1 expression is up-regulated by oestradiol, similarly to that seen in the anteroventral periventricular nucleus of the hypothalamus. Conversely, GPR54 is up-regulated by GnRH, which exclusively targets gonadotrophs. [source] Increased Caloric Intake on a Fat-Rich Diet: Role of Ovarian Steroids and Galanin in the Medial Preoptic and Paraventricular Nuclei and Anterior Pituitary of Female RatsJOURNAL OF NEUROENDOCRINOLOGY, Issue 10 2007S. F. Leibowitz Previous studies in male rats have demonstrated that the orexigenic peptide galanin (GAL), in neurones of the anterior parvocellular region of the paraventricular nucleus (aPVN) projecting to the median eminence (ME), is stimulated by consumption of a high-fat diet and may have a role in the hyperphagia induced by fat. In addition to confirming this relationship in female rats and distinguishing the aPVN-ME from other hypothalamic areas, the present study identified two additional extra-hypothalamic sites where GAL is stimulated by dietary fat in females but not males. These sites were the medial preoptic nucleus (MPN), located immediately rostral to the aPVN, and the anterior pituitary (AP). The involvement of ovarian steroids, oestradiol (E2) and progesterone (PROG), in this phenomenon was suggested by an observed increase in circulating levels of these hormones and GAL in MPN and AP with fat consumption and an attenuation of this effect on GAL in ovariectomised (OVX) rats. Furthermore, in the same four areas affected by dietary fat, levels of GAL mRNA and peptide immunoreactivity were stimulated by E2 and further by PROG replacement in E2 -primed OVX rats and were higher in females compared to males. Because both GAL and PROG stimulate feeding, their increase on a fat-rich diet may have functional consequences in females, possibly contributing to the increased caloric intake induced by dietary fat. This is supported by the findings that PROG administration in E2 -primed OVX rats reverses the inhibitory effect of E2 on total caloric intake while increasing voluntary fat ingestion, and that female rats with higher GAL exhibit increased preference for fat compared to males. Thus, ovarian steroids may function together with GAL in a neurocircuit, involving the MPN, aPVN, ME and AP, which coordinate feeding behaviour with reproductive function to promote consumption of a fat-rich diet at times of increased energy demand. [source] Alteration in Hypothalamic Neuropeptide Y (NPY) Secretion May Underlie Female Reproductive Ageing: Induction of Steroid-Induced Luteinising Hormone Surge by NPY in Ovariectomised Aged RatsJOURNAL OF NEUROENDOCRINOLOGY, Issue 8 2006A. Sahu A large body of evidence suggests that a defect in the hypothalamic function may be the primary cause of reproductive ageing in female rats. We have previously shown that luteinising hormone (LH)-surge associated changes in hypothalamic neuropeptide Y (NPY) gene expression and median eminence (ME) NPY levels seen in young rats do not occur in middle-aged (MA) rats. The present study examined whether hypothalamic NPY release is altered during the steroid-induced LH surge in ovariectomised (OVX) MA rats, and whether exogenous NPY initiates steroid-induced LH surge in OVX old rats. In the first study, NPY release from the ME-arcuate nucleus, as assessed by the push,pull cannula technique, was significantly increased before and during the progesterone-induced LH surge in oestrogen (E2)-primed ovariectomised young rats (2,3 months old). This antecedent increase in NPY release seen in young rats was not apparent in MA rats (11,13 months old) in association with a delayed and attenuated LH surge. In the second study, whereas progesterone failed to induce LH surges in E2 -primed ovariectomised old rats (23,25 months old), intracerebroventricular NPY (0.1,0.5 µg) injections at 1100, 1200 and 13.00 h resulted in LH surge induction in E2 + progesterone-primed ovariectomised old rats. Because increased hypothalamic NPY synthesis and release is obligatory for the preovulatory LH discharge in young rats, the present findings suggest that alteration in NPY release from the ME-arcuate nucleus contributes to the delayed and reduced LH surges in MA rats and may be involved in the subsequent loss of the LH surges in old rats. [source] |