Oviposition Response (oviposition + response)

Distribution by Scientific Domains


Selected Abstracts


Oviposition-stimulatory activity of phenanthroindolizidine alkaloids of host-plant origin to a danaid butterfly, Ideopsis similis

PHYSIOLOGICAL ENTOMOLOGY, Issue 1 2001
Keiichi Honda
Summary Oviposition response of Ideopsis similis (L.) (Lepidoptera: Danaidae) was examined for 12 phenanthroindolizidine alkaloids present in its host plant, Tylophora tanakae (Maxim.) (Asclepiadaceae). At least five alkaloids, i.e. (+)-isotylocrebrine (3,4,6,7-tetramethoxyphenanthroindolizidine; l), (+)-3-demethyliso- tylocrebrine (3), (+)-isotylocrebrine N -oxide (5), (+)-6-demethyltylocrebrine (8) and (,)-7-demethyltylophorine (10), were found to individually stimulate oviposition by females. Of these, compounds 1, 3 and 10 were regarded as key components most responsible for host recognition or preference. However, female egg-laying was much higher in response to a mixture of the five alkaloids. In two-choice bioassays, more eggs were deposited on samples comprising the five alkaloids than on samples consisting of a single alkaloid. This suggests strongly that host selection by the butterfly is mediated by the synergistic action of several phenanthroindolizidine alkaloids present in the host plant. [source]


Role of bacteria in the oviposition behaviour and larval development of stable flies

MEDICAL AND VETERINARY ENTOMOLOGY, Issue 1 2006
A. Romero
Abstract., Stable flies, Stomoxys calcitrans (L.), are the most important pests of cattle in the United States. However, adequate management strategies for stable flies, especially for pastured cattle, are lacking. Microbial/symbiont-based approaches offer novel venues for management of insect pests and/or vector-borne human and animal pathogens. Unfortunately, the fundamental knowledge of stable fly,microbial associations and their effect on stable fly biology is lacking. In this study, stable flies laid greater numbers of eggs on a substrate with an active microbial community (> 95% of total eggs oviposited) than on a sterilized substrate. In addition, stable fly larvae could not develop in a sterilized natural or artificial substrate/medium. Bacteria were isolated and identified from a natural stable fly oviposition/developmental habitat and their individual effect on stable fly oviposition response and larval development was evaluated in laboratory bioassays. Of nine bacterial strains evaluated in the oviposition bioassays, Citrobacter freundii stimulated oviposition to the greatest extent. C. freundii also sustained stable fly development, but to a lesser degree than Serratia fanticola. Serratia marcescens and Aeromonas spp. neither stimulated oviposition nor supported stable fly development. These results demonstrate a stable fly bacterial symbiosis; stable fly larval development depends on a live microbial community in the natural habitat, and stable fly females are capable of selecting an oviposition site based on the microbially derived stimuli that indicate the suitability of the substrate for larval development. This study shows a promising starting point for exploiting stable fly,bacterial associations for development of novel approaches for stable fly management. [source]


Coping with third parties in a nursery pollination mutualism: Hadena bicruris avoids oviposition on pathogen-infected, less rewarding Silene latifolia

NEW PHYTOLOGIST, Issue 4 2006
Arjen Biere
Summary ,,In nursery pollination systems, pollinator offspring usually feed on pollinated fruits or seeds. Costs and benefits of the interaction for plant and pollinator, and hence its local outcome (antagonism,mutualism), can be affected by the presence of ,third-party' species. Infection of Silene latifolia plants by the fungus Microbotryum violaceum halts the development of fruits that provide shelter and food for larvae of the pollinating moth Hadena bicruris. We investigated whether the moth secures its benefit by selective oviposition on uninfected flowers. ,,Oviposition was recorded in eight natural populations as a function of plant infection status, local neighbourhood, plant and flower characteristics. ,,Oviposition was six times lower on flowers from infected than on those from uninfected plants. Oviposition decreased with decreasing flower and ovary size. Moths could use the latter to discriminate against diseased flowers. ,,Although moths show an adaptive oviposition response, they reduce the future potential of healthy hosts because they still visit infected plants for nectar, vectoring the disease, and they reduce any fitness advantage gained by disease-resistant plants through selective predation of those plants. [source]


Larvicidal and oviposition-altering activity of monoterpenoids, trans -anithole and rosemary oil to the yellow fever mosquito Aedes aegypti (Diptera: Culicidae),

PEST MANAGEMENT SCIENCE (FORMERLY: PESTICIDE SCIENCE), Issue 3 2009
Ranil Waliwitiya
Abstract BACKGROUND:Aedes aegypti L. is the major vector of dengue fever and dengue hemorrhagic fever. In an effort to find effective tools for control programs to reduce mosquito populations, the authors assessed the acute toxicities of 14 monoterpenoids, trans -anithole and the essential oil of rosemary against different larval stages of Ae. aegypti. The potential for piperonyl butoxide (PBO) to act as a synergist for these compounds to increase larvicidal activity was also examined, and the oviposition response of gravid Ae. aegypti females to substrates containing these compounds was evaluated in behavioral bioassays. RESULTS: Pulegone, thymol, eugenol, trans -anithole, rosemary oil and citronellal showed high larvicidal activity against all larval stages of Ae. aegypti (LC50 values 10.3,40.8 mg L,1). The addition of PBO significantly increased the larvicidal activity of all test compounds (3,250-fold). Eugenol, citronellal, thymol, pulegone, rosemary oil and cymene showed oviposition deterrent and/or repellent activities, while the presence of borneol, camphor and ,-pinene increased the number of eggs laid in test containers. CONCLUSIONS: This study quantified the lethal and sublethal effects of several phytochemical compounds against all larval stages of Aedes aegypti, providing information that ultimately may have potential in mosquito control programs through acute toxicity and/or the ability to alter reproductive behaviors. Copyright © 2008 Society of Chemical Industry [source]


Attract-and-kill strategy.

PEST MANAGEMENT SCIENCE (FORMERLY: PESTICIDE SCIENCE), Issue 10 2007
Laboratory studies on hatched larvae of Culex pipiens
Abstract The attract-and-kill strategy is a new pest management technique that presupposes the intelligent combination of an attracting agent (e.g. pheromone) and a killing agent (e.g. insecticide). In the present study, the potential combination of the microencapsulated synthetic oviposition pheromone 6-acetoxy-5-hexadecanolide with an insecticide has been tested. Initially, polyurea microcapsules containing 6-acetoxy-5-hexadecanolide, the synthetic mixture of diastereomers of the oviposition pheromone of the mosquito species Culex quinquefasciatus Say (Diptera: Culicidae), were studied. Laboratory bioassays were performed to confirm the bioactivity of the microencapsulated pheromone on the oviposition activity of Culex pipiens L. biotype molestus Førskal (Diptera: Culicidae) with the aim of determining the optimum dose for oviposition response. Its effect was dose dependent, revealing an optimum dose of 300 mg of dried microcapsules. Attractancy over time was also studied. The microencapsulated pheromone was found to be sufficiently attractive to gravid female mosquitoes for a period of 40 days. Finally, the combination of the synthetic pheromone with the control agent temephos showed both an acceptable oviposition activity and sufficient larvicidal effect. Copyright © 2007 Society of Chemical Industry [source]


Oviposition by Lobesia botrana is stimulated by sugars detected by contact chemoreceptors

PHYSIOLOGICAL ENTOMOLOGY, Issue 1 2006
Nevile Maher
Abstract., The influence of glucose, fructose and sucrose on oviposition site selection by Lobesia botrana is studied by combining behavioural and electrophysiological experiments. Oviposition choice assays, using surrogate grapes treated with grape berry surface extracts of Vitis vinifera cv. Merlot at different development stages, show that L. botrana females are most stimulated by extracts of mature berries containing the highest concentrations of glucose and fructose. Choice assays reveal that the oviposition response to these sugars is dose-dependant (with a threshold of the applied solution = 10 mm and a maximum stimulation at 1 m) and that females are more sensitive to fructose than to glucose. Tarsal contact-chemoreceptor sensilla are unresponsive to stimulation with sugars but the ovipositor sensilla contain at least one neurone most sensitive to fructose and sucrose with a threshold of approximately 0.5 mm. Corresponding to the behavioural data, glucose is significantly less stimulatory to sensilla than fructose or sucrose. It is argued that fructose may be of special importance for herbivorous insects exploiting fruit as an oviposition site. [source]


Host-plant preference and oviposition responses of the sorghum midge, Stenodiplosis sorghicola (Coquillett) (Dipt., Cecidomyiidae) towards wild relatives of sorghum

JOURNAL OF APPLIED ENTOMOLOGY, Issue 3 2001
Sharma
Sorghum midge, Stenodiplosis (Contarinia) sorghicola (Coquillett) is an important pest of grain sorghum world-wide. Considerable progress has been made in screening and breeding for resistance to sorghum midge. However, some of the sources of resistance have become susceptible to sorghum midge in Kenya, in eastern Africa. Therefore, the wild relatives of Sorghum bicolor were studied as a possible source of new genes conferring resistance to sorghum midge. Midge females did not lay eggs in the spikelets of Sorghum amplum, Sorghum bulbosum, and Sorghum angustum compared to 30% spikelets with eggs in Sorghum halepense when infested with five midge females per panicle under no-choice conditions. However, one egg was laid in S. amplum when infested with 50 midges per panicle. A larger number of midges were attracted to the odours from the panicles of S. halepense than to the panicles of Sorghum stipoideum, Sorghum brachypodum, S.angustum, Sorghum macrospermum, Sorghum nitidium, Sorghum laxiflorum, and S. amplum in dual-choice olfactometer tests. The differences in midge response to the odours from S. halepense and Sorghum intrans were not significant. Under multi-choice conditions, when the females were also allowed a contact with the host, more sorghum midge females were attracted to the panicles of S. bicolor compared with S. amplum, S. angustum, and S. halepense. In another test, numerically more midges responded to the panicles of IS 10712 compared with S. halepense, whereas the differences in midge response to the panicles of ICSV 197 (S. bicolor) and S. halepense were not apparent, indicating that S. halepense is as attractive to sorghum midge females as S. bicolor. The wild relatives of sorghum (except S. halepense) were not preferred for oviposition, and they were also less attractive to the sorghum midge females. Thus, wild relatives of sorghum can prove to be an alternative source of genes for resistance to sorghum midge. [source]