Oviductal Fluid (oviductal + fluid)

Distribution by Scientific Domains


Selected Abstracts


How does polyspermy happen in mammalian oocytes?

MICROSCOPY RESEARCH AND TECHNIQUE, Issue 4 2003
Wei-Hua Wang
Abstract Polyspermy is one of the most commonly observed abnormal types of fertilization in mammalian oocytes. In vitro fertilization (IVF) provides approaches to study the mechanisms by which oocytes block polyspermic fertilization. Accumulated data indicate that oocyte, sperm and insemination conditions are all related to the occurrence of polyspermic fertilization. A high proportion of immature and aged oocytes showed polyspermy as compared with mature oocytes. Preincubation of oocytes and/or sperm with oviductal epithelial cells or collected oviductal fluid before IVF reduces polyspermic penetration. Recently, it was found that an abnormal zona pellucida is one of main causes of polyspermy in human eggs. A high proportion of polyspermy has resulted from the use of a high concentration of capacitated spermatozoa at the site of fertilization, irrespective of in the in vivo or in vitro environment. Oviductal secretions or oviductal epithelial cells themselves can regulate the number of spermatozoa reaching or binding to the zona pellucida thus reducing multiple sperm penetration. Suboptimal in vitro conditions, such as supplementations in IVF media, pH, and temperature during IVF, also induce polyspermic fertilization in some mammals. Species-specific differences are present regarding the relationship between insemination conditions and polyspermy. Microsc. Res. Tech. 61:335,341, 2003. © 2003 Wiley-Liss, Inc. [source]


Surface mapping of binding of oviductin to the plasma membrane of golden hamster spermatozoa during in vitro capacitation and acrosome reaction

MOLECULAR REPRODUCTION & DEVELOPMENT, Issue 6 2006
Frederick W.K. Kan
Abstract Oviductins are high-molecular-weight glycoproteins synthesized and secreted by nonciliated oviductal epithelial cells and have been shown to play a role in fertilization and early embryo development. The present study was carried out to examine the in vitro binding capacity of hamster oviductin to homologous sperm and to determine the sites of its localization in untreated, capacitated, and acrosome-reacted spermatozoa. Freshly prepared epididymal and capacitated sperm as well as acrosome-reacted sperm were incubated with oviductal fluid prepared from isolated hamster oviducts, fixed and then probed with a monoclonal antibody against hamster oviductin. Results obtained with pre-embedding immunolabeling experiments revealed binding of oviductin to the acrosomal cap and the apical aspect of the postacrosomal region. Immunolabeling of both regions appeared to be more intense in capacitated spermatozoa. Acrosome-reacted sperm showed an immunoreaction of moderate intensity over the postacrosomal region. The plasma membrane overlying the equatorial segment also exhibited a weak labeling. Quantitative analysis obtained with the surface replica technique indicated that oviductin had a higher binding affinity for the acrosomal cap than the postacrosomal region and that the binding of oviductin to the latter plasma membrane domain was enhanced during capacitation. Binding of oviductin to the postacrosomal region, however, was attenuated after acrosome reaction. Immunolabeling for oviductin was found to be the weakest over the equatorial segment regardless of the experimental conditions. The binding of hamster oviductin to specific membrane domains of the homologous sperm and the changes in its distribution during capacitation and acrosome reaction may be important for the function of hamster oviductin preceding and during fertilization. Mol. Reprod. Dev. © 2006 Wiley-Liss, Inc. [source]


Oviductal Fluid Proteins Associated with the Bovine Zona Pellucida and the Effect on In Vitro Sperm,Egg Binding, Fertilization and Embryo Development

REPRODUCTION IN DOMESTIC ANIMALS, Issue 6 2008
RF Gonçalves
Contents Studies have demonstrated that oviductal fluid (ODF) proteins associate with eggs of numerous species including the bovine. In this study, the association of three ODF proteins, the bovine oestrus-associated protein, osteopontin (OPN), lipocalin-type prostaglandin D synthase (L-PGDS), with the bovine zona pellucida (ZP) was demonstrated by immunohistochemistry and western blot. The biological function of ODF derived egg-associated OPN and L-PGDS in sperm binding, fertilization and embryonic development was also explored. In vitro matured bovine oocytes were pre-incubated with ODF collected by cannula from cows in oestrus, or ODF with antibodies to OPN, L-PGDS and bovine serum albumin (BSA). Following incubation, oocytes were inseminated with 1 × 105 frozen-thawed spermatozoa, and they were evaluated for sperm binding, fertilization and embryonic development in vitro. Pre-treatment of ODF with antibodies to all of proteins reduced sperm binding to the ZP and fertilization in vitro. Cleavage rates were not significantly different among incubations, but rates of embryo development were significantly decreased. We conclude that antibodies to OPN, L-PGDS and BSA react with oocytes incubated with ODF and inhibit sperm binding, fertilization and embryonic development in vitro, suggesting a potential role of these proteins in these events. [source]


Effect of Alpha-Tocopherol and Ascorbic Acid on Bovine Oocyte in Vitro Maturation

REPRODUCTION IN DOMESTIC ANIMALS, Issue 2 2005
G Dalvit
Contents In vitro culture results in higher oxygen concentrations than in vivo environments, leading to an increased level of reactive oxygen species (ROS) that cause lipid peroxidation of cellular membranes. Alpha-tocopherol (active form of vitamin E) is an antioxidant that protects mammalian cells against lipid peroxidation, which is regenerated by ascorbic acid. The aim of this study was to determine the effect of the addition of alpha-tocopherol and/or ascorbic acid to the maturation medium on bovine oocyte in vitro maturation (IVM) and subsequently on in vitro fertilization (IVF) and embryo development. Cumulus,oocyte complexes (COCs) were matured in Medium 199 (control), and with the addition of alpha-tocopherol and/or ascorbic acid. The concentration of alpha-tocopherol in COCs was determined by high-performance liquid chromatography (HPLC). IVF and in vitro culture (IVC) were carried out in modified synthetic oviductal fluid (mSOF). The quantity of alpha-tocopherol naturally present in COCs diminished by half during IVM (p < 0.05), although in the presence of ascorbic acid it remained constant. A greater amount of alpha-tocopherol was detected in COCs matured in medium supplemented with this antioxidant (p < 0.05), but the addition of alpha-tocopherol plus ascorbic acid maintained higher levels of alpha-tocopherol (p < 0.05). Significant differences were not observed in the percentages of nuclear maturation and fertilization among different treatments. The presence of alpha-tocopherol or ascorbic acid in the maturation medium failed to modify the percentage of blastocysts obtained, unlike the addition of both antioxidants when a significant decrease was observed (p < 0.05). Absorbic acid maintained the antioxidant capacity of the alpha-tocopherol incorporated to COC membranes during IVM. The active form of vitamin E during maturation impaired the acquisition of oocyte developmental competence. [source]