Home About us Contact | |||
Ovariectomy
Kinds of Ovariectomy Selected AbstractsOvariectomy increases vascular calcification via the OPG/RANKL cytokine signalling pathwayEUROPEAN JOURNAL OF CLINICAL INVESTIGATION, Issue 4 2008B. G. Choi ABSTRACT Background, Observational studies suggest a strong relationship between menopause and vascular calcification. Receptor activator of nuclear factor-,, ligand (RANKL) and osteoprotegerin (OPG) are critical regulators of bone remodelling and modulate vascular calcification. We assessed the hypothesis that ovariectomy increases vascular calcification via the OPG/RANKL axis. Materials and methods, Age-matched sexually mature rabbits were randomized to ovariectomy (OVX, n = 12) or sham procedure (SHAM, n = 12). One month post-procedure, atherosclerosis was induced by 15 months 0·2%-cholesterol diet and endothelial balloon denudations (at months 1 and 3). Aortic atherosclerosis was assessed in vivo by magnetic resonance imaging (MRI) at months 9 and 15. At sacrifice, aortas were harvested for ex vivo microcomputed tomography (µCT) and molecular analysis of the vascular tissue. Results, Vascular calcification density and calcific particle number were significantly greater in OVX than SHAM (8·4 ± 2·8 vs. 1·9 ± 0·6 mg cm,3, P = 0·042, and 94 ± 26 vs. 33 ± 7 particles cm,3, P = 0·046, respectively). Calcification morphology, as assessed by the arc angle subtended by the largest calcific particle, showed no difference between groups (OVX 33 ± 7° vs. SHAM 33 ± 5°, P = 0·99). By Western blot analysis, OVX increased the vascular OPG:RANKL ratio by 66%, P = 0·029, primarily by decreasing RANKL (P = 0·019). At month 9, MRI demonstrated no difference in atheroma volume between OVX and SHAM, and no significant change was seen by the end of the study. Conclusions, In contrast to bone, vascular OPG:RANKL ratio increased in response to ovariectomy with a corresponding fourfold increase in arterial calcification. This diametrical organ-specific response may explain the comorbid association of osteoporosis with calcifying atherosclerosis in post-menopausal women. [source] A detailed microscopic study of the changes in the aorta of experimental model of postmenopausal rats fed with repeatedly heated palm oilINTERNATIONAL JOURNAL OF EXPERIMENTAL PATHOLOGY, Issue 3 2009Siti Khadijah Adam Summary Hypercholesterolaemia, increase in lipid peroxidation and hyperhomocysteinaemia may contribute to the pathogenesis of atherosclerosis. This study was performed to examine the effects of repeatedly heated palm oil mixed with 2% cholesterol diet on atherosclerosis in oestrogen-deficient postmenopausal rats. Ovariectomy causes disruption of tunica intima layer of the rat aorta simulating a postmenopausal condition in females. Twenty-four ovariectomized female Sprague,Dawley rats were divided into four groups. The control group received 2% cholesterol diet without palm oil. A diet with 2% cholesterol content fortified with fresh, once-heated and five-times-heated palm oil was given to the other treatment groups. The rats were sacrificed at the end of 4 months of study and the aortic arch tissue was processed for histomorphometry and electron microscopy. On observation, there was disruption of the intimal layer of the ovariectomized rat aorta. There was no obvious ultrastructural change in the aorta of the rats fed with fresh palm oil. The ultrastructural changes were minimal with once-heated palm oil, in which there was a focal disruption of the endothelial layer. The focal disruption was more pronounced with five-times-heated palm oil. The results of this study show that the ingestion of fresh palm oil may have a protective effect on the aorta but such a protective action may be lost when the palm oil is repeatedly heated. The study may be clinically important for all postmenopausal women who are susceptible to atherosclerosis. [source] RANKL Inhibition with Osteoprotegerin Increases Bone Strength by Improving Cortical and Trabecular bone Architecture in Ovariectomized Rats,,JOURNAL OF BONE AND MINERAL RESEARCH, Issue 5 2008Michael S Ominsky Abstract Introduction: Ovariectomy (OVX) results in bone loss caused by increased bone resorption. RANKL is an essential mediator of bone resorption. We examined whether the RANKL inhibitor osteoprotegerin (OPG) would preserve bone volume, density, and strength in OVX rats. Materials and Methods: Rats were OVX or sham-operated at 3 mo of age. Sham controls were treated for 6 wk with vehicle (Veh, PBS). OVX rats were treated with Veh or human OPG-Fc (10 mg/kg, 2/wk). Serum RANKL and TRACP5b was measured by ELISA. BMD of lumbar vertebrae (L1,L5) and distal femur was measured by DXA. Right distal femurs were processed for bone histomorphometry. Left femurs and the fifth lumbar vertebra (L5) were analyzed by ,CT and biomechanical testing, and L6 was analyzed for ash weight. Results: OVX was associated with significantly greater serum RANKL and osteoclast surface and with reduced areal and volumetric BMD. OPG markedly reduced osteoclast surface and serum TRACP5b while completely preventing OVX-associated bone loss in the lumbar vertebrae, distal femur, and femur neck. Vertebrae from OPG-treated rats had increased dry and ash weight, with no significant differences in tissue mineralization versus OVX controls. ,CT showed that trabecular compartments in OVX-OPG rats had significantly greater bone volume fraction, vBMD, bone area, trabecular thickness, and number, whereas their cortical compartments had significantly greater bone area (p < 0.05 versus OVX-Veh). OPG improved cortical area in L5 and the femur neck to levels that were significantly greater than OVX or sham controls (p < 0.05). Biomechanical testing of L5 and femur necks showed significantly greater maximum load values in the OVX-OPG group (p < 0.05 versus OVX-Veh). Bone strength at both sites was linearly correlated with total bone area (r2 = 0.54,0.74, p < 0.0001), which was also significantly increased by OPG (p < 0.05 versus OVX). Conclusions: OPG treatment prevented bone loss, preserved trabecular architecture, and increased cortical area and bone strength in OVX rats. [source] Intestinal Calcium Transporter Genes Are Upregulated by Estrogens and the Reproductive Cycle Through Vitamin D Receptor-Independent Mechanisms,JOURNAL OF BONE AND MINERAL RESEARCH, Issue 10 2003SJ Van Cromphaut Abstract 1,,25(OH)2 -vitamin D strongly regulates the expression of the epithelial calcium channel CaT1. CaT1 expression is reduced in ERKO, mice and induced by estrogen treatment, pregnancy, or lactation in VDR WT and KO mice. Estrogens and vitamin D are thus independent potent regulators of the expression of this calcium influx mechanism, which is involved in active intestinal calcium absorption. Introduction: Active duodenal calcium absorption consists of three major steps: calcium influx into, transfer through, and extrusion out of the enterocyte. These steps are carried out by the calcium transport protein 1 (CaT1), calbindin-D9K, and the plasma membrane calcium ATPase (PMCA1b), respectively. We investigated whether estrogens or hormonal changes during the female reproductive cycle influence the expression of these genes, and if so, whether these effects are vitamin D-vitamin D receptor (VDR) dependent. Materials and Methods: We evaluated duodenal expression patterns in estrogen receptor (ER), and -, knockout (KO) mice, as well as in ovariectomized, estrogen-treated, pregnant, and lactating VDR wild-type (WT) and VDR KO mice. Results: Expression of calcium transporter genes was not altered in ERKO, mice. CaT1 mRNA expression was reduced by 55% in ERKO, mice, while the two other calcium transporter genes were not affected. Ovariectomy caused no change in duodenal expression pattern of VDR WT and KO mice, whereas treatment with a pharmacologic dose of estrogens induced CaT1 mRNA expression in VDR WT (4-fold) and KO (8-fold) mice. Pregnancy enhanced CaT1 expression equally in VDR WT and KO mice (12-fold). Calbindin-D9K and PMCA1b expression increased to a lesser extent and solely in pregnant VDR WT animals. In lactating VDR WT and KO mice, CaT1 mRNA expression increased 13 times, which was associated with a smaller increase in calbindin-D9K protein content and PMCA1b mRNA expression. Conclusions: Estrogens or hormonal changes during pregnancy or lactation have distinct, vitamin D-independent effects at the genomic level on active duodenal calcium absorption mechanisms, mainly through a major upregulation of the calcium influx channel CaT1. The estrogen effects seem to be mediated solely by ER,. [source] Tower Climbing Exercise Started 3 Months After Ovariectomy Recovers Bone Strength of the Femur and Lumbar Vertebrae in Aged Osteopenic Rats,JOURNAL OF BONE AND MINERAL RESEARCH, Issue 1 2003Takuya Notomi Abstract To determine both the preventive and recovery effects of tower climbing exercise on mass, strength, and local turnover of bone in ovariectomized (OVX) rats, we carried out two experiments. In experiment I, 60 Sprague-Dawley rats, 12 months of age, were assigned to four groups: a Baseline Control, Sham-Operated Sedentary, OVX-Sedentary and OVX-Exercise rats. Rats voluntarily climbed a 200-cm tower to drink water from a bottle set at the top. At 3 months, OVX elevated both the femoral cortex and lumbar trabecular turnover, leading to a reduction in bone mass and strength. However, in OVX-Exercise rats, those values were maintained at the same level as in the Sham-Sedentary rats. Thus, the climbing exercise, started after 3 days of OVX, prevented OVX-induced cortical and trabecular bone loss by depressing turnover elevation. After confirming the preventive effect, we evaluated the recovery effect of exercise. In experiment II, 90 Sprague-Dawley rats, 12 months of age, were assigned to six groups: a Baseline control, two groups of Sham-Operated Sedentary and OVX-Sedentary, and OVX-Exercise rats. The exercise started 3 months after the OVX operation. At 3 months, OVX increased the trabecular bone formation rate and osteoclast surface, leading to a decrease in compressive strength. In the midfemur, the cross-sectional area, moment of inertia, and bending load values decreased. At 6 months, in the OVX-Exercise rats, the parameters of breaking load in both the lumbar and midfemur, lumbar bone mass, and the total cross-sectional area recovered to the same levels as those in the Sham-Sedentary rats. However, the cortical bone area did not recover. Periosteal bone formation increased, while endosteal bone formation decreased. These results showed that the climbing exercise had both a preventive and recovery effect on bone strength in OVX rats. In the mid-femur, effects on bone formation were site-specific, and the cross-sectional morphology was improved without an increase in cortical bone area, supporting cortical drift by mechanical stimulation. [source] Rutin Inhibits Ovariectomy-Induced Osteopenia in RatsJOURNAL OF BONE AND MINERAL RESEARCH, Issue 11 2000Marie-Noėlle Horcajada-Molteni Abstract Several studies suggest that polyphenols might exert a protective effect against osteopenia. The present experiment was conducted to observe the effects of rutin (quercetin-3- O -glucose rhamnose) on bone metabolism in ovariectomized (OVX) rats. Thirty 3-month-old Wistar rats were used. Twenty were OVX while the 10 controls were sham-operated (SH). Among the 20 OVX, for 90 days after surgery 10 were fed the same synthetic diet as the SH or OVX ones, but 0. 25% rutin (OVX + R) was added. At necropsy, the decrease in uterine weight was not different in OVX and OVX + R rats. Ovariectomy also induced a significant decrease in both total and distal metaphyseal femoral mineral density, which was prevented by rutin consumption. Moreover, femoral failure load, which was not different in OVX and SH rats, was even higher in OVX + R rats than in OVX or SH rats. In the same way, on day 90, both urinary deoxypyridinoline (DPD) excretion (a marker for bone resorption) and calciuria were higher in OVX rats than in OVX + R or SH rats. Simultaneously, plasma osteocalcin (OC) concentration (a marker for osteoblastic activity) was higher in OVX + R rats than in SH rats. High-performance liquid chromatography (HPLC) profiles of plasma samples from OVX + R rats revealed that mean plasma concentration of active metabolites (quercetin and isorhamnetin) from rutin was 9.46 + 1 ,M, whereas it was undetectable in SH and OVX rats. These results indicate that rutin (and/or its metabolites), which appeared devoid of any uterotrophic activity, inhibits ovariectomy-induced trabecular bone loss in rats, both by slowing down resorption and increasing osteoblastic activity. [source] Effects of estrogen and progesterone treatment on rat hippocampal NMDA receptors: Relationship to Morris water maze performanceJOURNAL OF CELLULAR AND MOLECULAR MEDICINE, Issue 4 2004Nahid K. El-Bakri Abstract Estrogen modulates NMDA receptors function in the brain. It increases both dendritic spine density and synapse number in the hippocampus, an effect that can be blocked by NMDA antagonist. In this study, we investigated the effect of 17,-estradiol and progesterone treatment on NMDA receptors in ovariectomized rats. Two different doses were used for 10 weeks. Receptor autoradiography was done on brain sections using [3H] MK-801 as a ligand. Our results showed a significant increase in [3H] MK-801 binding in the dentate gyrus, CA3 and CA4 areas of the hippocampus of ovariectomized compared to sham operated rats. In addition, we observed similar changes in CA1. 17,-estradiol treatment in both doses reduced the binding back to the normal level while progesterone treatment did not show any effect. Spatial reference memory was tested on Morris water maze task. Ovariectomy severely impaired spatial reference memory. Estradiol but not progesterone treatment significantly improved the memory performance of the ovariectomized rats. Low dose treatment showed better learning than high dose estrogen treatment. The decrease in the antagonist sites by estradiol treatment could result in an increase in the sensitivity of the hippocampus to the excitatory stimulation by glutamate system and hence the effect of estradiol on learning and memory. The changes of NMDA receptors in the hippocampus support the concept that estrogen-enhancing effect on spatial reference memory could be through the enhancing of NMDA function. [source] Daidzein but not other phytoestrogens preserves bone architecture in ovariectomized female rats in vivoJOURNAL OF CELLULAR BIOCHEMISTRY, Issue 6 2008D. Somjen Abstract Ovariectomy of immature female rats, results in significant decrease of trabecular bone volume and in cortical bone thickness. Previously, we found that estradiol-17, (E2) restored bone structure of ovariectomized (Ovx) female rats to values obtained in intact sham-operated female rats. E2 also selectively stimulated creatine kinase (CK) specific activity a hormonal-genomic activity marker. In the present study, we compared the effects of E2 and the phytoestrogens: daidzein (D), biochainin A (BA), genistein (G), carboxy-derivative of BA (cBA), and the SERM raloxifene (Ral) in Ovx, on both histological changes of bones and CK, when administered in multiple daily injections for 2.5 months. Bone from Ovx rats, showed significant disrupted architecture of the growth plate, with fewer proliferative cells and less chondroblasts. The metaphysis underneath the growth plate, contained less trabeculae but a significant increased number of adipocytes in the bone marrow. D like E2 and Ral but not G, BA, or cBA, restored the morphology of the tibiae, similar to that of control sham-operated animals; the bony trabeculeae observed in the primary spongiosa was thicker, with almost no adipocytes in bone marrow. Ovariectomy resulted also in reduced CK, which in both epiphysis and diaphysis was stimulated by all estrogenic compounds tested. In summary, only D stimulated skeletal tissues growth and differentiation as effectively as E2 or Ral, suggesting that under our experimental conditions, D is more effective in reversing menopausal changes than any of the other isolated phytoestrogens which cannot be considered as one entity. J. Cell. Biochem. 103: 1826,1832, 2007. © 2007 Wiley-Liss, Inc. [source] Antitumor and Antiangiogenic Activity of Soy Phytoestrogen on 7,12-Dimethylbenz[,]anthracene-Induced Mammary Tumors Following Ovariectomy in Sprague,Dawley RatsJOURNAL OF FOOD SCIENCE, Issue 7 2009Xinmei Kang ABSTRACT:, Soy phytoestrogen is often used as hormone replacement therapy to alleviate the symptoms of menopause in postmenopausal women. Since estrogen has been considered as an important risk factor for the development of breast carcinoma, we need to know whether it is safe for these postmenopausal women with breast cancer to take soy foods that are rich in phytoestrogen. In the present study, we investigated the efficacy of soy phytoestrogen on tumor proliferation, apoptosis, and angiogenesis in mammary tumors that had already formed in ovariectomized rats. We found that soy phytochemical extraction inhibited proliferation and induced apoptosis,in vitro,and,in vivo, and it demonstrated better antitumor effects than single phytoestrogen. Soy phytochemical extraction also produced surprisingly good antiangiogenic effects, which were evidenced by lower microvascular density, reduced plasma vascular endothelial growth factor, and increased plasma endostatin levels. Our findings suggest that soy phytochemical extraction exerts significant antitumor and antiangiogenic activity in a postmenopausal animal model with breast cancer. [source] Region-Specific Expression and Hormonal Regulation of the First Exon Variants of Rat Prolactin Receptor mRNA in Rat Brain and Anterior Pituitary GlandJOURNAL OF NEUROENDOCRINOLOGY, Issue 8 2007H. Nogami Recent studies have revealed the occurrence of five first exon variants of the rat prolactin receptor mRNA, suggesting that multiple promoters direct prolactin receptor transcription in response to different regulatory factors. In the present study, regional expression of these first exon variants, as well as two prolactin receptor subtypes generated by alternative splicing, was examined in the brains and anterior pituitary glands of female rats. Expression of the long-form was detected in the choroid plexus, hypothalamus, hippocampus, cerebral cortex and anterior pituitary gland, whereas the short form was detected only in the choroid plexus. E1-3 mRNA, a first exon variant, was detected in the choroid plexus, hypothalamus, and anterior pituitary gland, whereas E1-4 was detected only in the choroid plexus. Other variants were not detectable by the polymerase chain reaction protocol employed in this study. Ovariectomy increased the short form in the choroid plexus and the E1-3 expression in the choroid plexus and pituitary gland, but changes in the long-form and E1-4 expression were minimal. Replacement of oestrogens and prolactin suggest that oestrogens down-regulate E1-3 expression in the choroid plexus and pituitary gland, and that the negative effect of oestrogen is mediated by prolactin in the pituitary gland. The present results revealed the region-specific promoter usage in prolactin receptor mRNA transcription, as well as the involvement of oestrogens in the regulation of E1-3 mRNA expression in the brain and pituitary gland. [source] Regional and Selective Effects of Oestradiol and Progesterone on NMDA and AMPA Receptors in the Rat BrainJOURNAL OF NEUROENDOCRINOLOGY, Issue 5 2000We investigated the effect of 10 months ovariectomy and a correction therapy, 2 weeks before the rats were killed, of oestradiol, progesterone or their combination on NMDA and AMPA receptor binding in the hippocampus, dentate gyrus, striatum, nucleus accumbens and frontal cortex of the rat brain as well as on amino acid levels in frontal cortex. NMDA and AMPA binding densities were assayed by autoradiography using, respectively, l -[3H]glutamate and [3H]AMPA; amino acid concentrations were measured by high performance liquid chromatograhy (HPLC) coupled with UV detection. Ovariectomy was without effect on NMDA and AMPA binding density in all brain regions assayed except in the hippocampal CA1 region and dentate gyrus where it decreased NMDA binding density compared to intact rats values. Oestradiol restored and increased NMDA binding density in the CA1 subfield and the dentate gyrus of ovariectomized rats but, by contrast, it decreased binding density in the striatum and in the frontal cortex while having no effect in the CA2/3 subfield of the hippocampus and in the nucleus accumbens. Oestradiol was without effect on AMPA binding density in the hippocampus and the dentate gyrus but it reduced AMPA binding density in the striatum, the frontal cortex and the nucleus accumbens. Progesterone, and oestradiol combined with progesterone, decreased NMDA but not AMPA binding density in the frontal cortex of ovariectomized rats, and they were without effect on these receptors in the other brain regions assayed. Amino acid concentrations in the frontal cortex were unchanged after ovariectomy or steroid treatments. The effect of oestradiol in the hippocampus confirmed in the present study and our novel findings in the frontal cortex, striatum and nucleus accumbens may have functional significance for schizophrenia and neurodegenerative diseases. [source] Age and ovariectomy impair both the normalization of mechanical properties and the accretion of mineral by the fracture callus in ratsJOURNAL OF ORTHOPAEDIC RESEARCH, Issue 3 2001Ralph A. Meyer Jr. The impact of age and ovariectomy on the healing of femoral fractures was studied in three groups of female rats at 8, 32 and 50 weeks of age at fracture. In the two older groups, the rats had been subjected to ovariectomy or sham surgery at random at 26 weeks of age. At fracture, all rats received unilateral intramedullary pinning of one femur and a middiaphyseal fracture. Rigidity and breaking load of the femora were evaluated at varying times up to 24 weeks after fracture induction by three-point bending to failure. Bone mineral density (BMD) was measured by dual-energy X-ray absorptiometry. In the youngest group, 8-week-old female rats regained normal femoral rigidity and breaking load by 4 weeks after fracture. They exceeded normal contralateral values by 8 weeks after fracture. In the middle group, at 32 weeks of age, fractures were induced, and the femora were harvested at 6 and 12 weeks after fracture. At 6 weeks after fracture there was partial restoration of rigidity and breaking load. At 12 weeks after fracture, only the sham-operated rats had regained normal biomechanical values in their fractured femora, while the fractured femora of the ovariectomized rats remained significantly lower in both rigidity and breaking load. In contrast, for the oldest group of rats, 50 weeks old at fracture, neither sham-operated nor ovariectomized rats regained normal rigidity or breaking load in their fractured femora within the 24 weeks in which they were studied. In all fractured bones, there was a significant increase in BMD over the contralateral intact femora due to the increased bone tissue and bone mineral in the fracture callus. Ovariectomy significantly reduced the BMD of the intact femora and also reduced the gain in BMD by the fractured femora. In conclusion, age and ovariectomy significantly impair the process of fracture healing in female rats as judged by measurements of rigidity and breaking load in three-point bending and by accretion of mineral into the fracture callus. © 2001 Orthopaedic Research Society. Published by Elsevier Science Ltd. All rights reserved. [source] The Effect of Ovariectomy and Estrogen on Penetrating Brain Arterioles and Blood-Brain Barrier PermeabilityMICROCIRCULATION, Issue 8 2009Marilyn J. Cipolla ABSTRACT Objective: We investigated the effect of estrogen replacement on the structure and function of penetrating brain arterioles (PA) and blood-brain barrier (BBB) permeability. Materials and Methods: Female ovariectomized Sprague-Dawley rats were replaced with estradiol (E2) and estriol (E3) (OVX + E;N=13) and compared to ovariectomized animals without replacement (OVX; N=14) and intact controls (CTL, proestrous; N=13). Passive and active diameters, percent tone, and passive distensibility of pressurized PA were compared. In addition, BBB permeability to Lucifer Yellow, a marker of transcellular transport, was compared in cerebral arteries. Results: Ovariectomy increased myogenic tone in PA, compared to CTL, that was not ameliorated by estrogen treatment. Percent tone at 75 mmHg for CTL vs. OVX and OVX + E was 44±3% vs. 51±1% and 54±3% (P<0.01 vs. CTL for both). No differences were found in passive diameters or distensibility between the groups. BBB permeability increased 500% in OVX vs. CTL animals; however, estrogen replacement restored barrier properties: flux of Lucifer Yellow for CTL, OVX, and OVX + E was (ng/mL): 3.4±1.2, 20.2±5.3 (P<0.01 vs. CTL), and 6.15±1.2 (n.s.). Conclusions: These results suggest that estrogen replacement may not be beneficial for small-vessel disease in the brain, but may limit BBB disruption and edema under conditions that cause it. [source] Ovariectomy stimulates and bisphosphonates inhibit intracortical remodeling in the mouse mandibleORTHODONTICS & CRANIOFACIAL RESEARCH, Issue 4 2010DJ Kubek To cite this article: Kubek DJ, Burr DB, Allen MR: Ovariectomy stimulates and bisphosphonates inhibit intracortical remodeling in the mouse mandible Orthod Craniofac Res 2010;13:214,222 Structured Abstract Authors,,, Kubek DJ, Burr DB, Allen MR Objective,,, The pathophysiology of osteonecrosis of the jaw (ONJ) is thought to be linked to suppression of intracortical remodeling. The aim of this study was to determine whether mice, which normally do not undergo appreciable amounts of intracortical remodeling, could be stimulated by ovariectomy to remodel within the cortex of the mandible and if bisphosphonates (BPs) would suppress this intracortical remodeling. Material and Methods,,, Skeletally mature female C3H mice were either ovariectomized (OVX) or SHAM operated and treated with two intravenous doses of zoledronic acid (ZOL, 0.06 mg/kg body weight) or vehicle (VEH). This ZOL dose corresponds to the dose given to patients with cancer on a mg/kg basis, adjusted for body weight. Calcein was administered prior to sacrifice to label active formation sites. Dynamic histomorphometry of the mandible and femur was performed. Results,,, Vehicle-treated OVX animals had significantly higher (eightfold) intracortical remodeling of the alveolar portion of the mandible compared to sham , this was significantly suppressed by ZOL treatment. At all skeletal sites, overall bone formation rate was lower with ZOL treatment compared to the corresponding VEH group. Conclusions,,, Under normal conditions, the level of intracortical remodeling in the mouse mandible is minimal but in C3H mice it can be stimulated to appreciable levels with ovariectomy. Based on this, if the suppression of intracortical remodeling is found to be part of the pathophysiology of ONJ, the ovariectomized C3H mouse could serve as a useful tool for studying this condition. [source] The Effect of Ovariectomy on Rat Vaginal Tissue Contractility and HistomorphologyTHE JOURNAL OF SEXUAL MEDICINE, Issue 2 2006F. Fatih Önol MD ABSTRACT Introduction., Ovarian hormones have an important role in age-related genital arousal disorders; however, our knowledge regarding possible vaginal wall morphology and contractility changes in low-hormonal states is limited. Aims., To investigate morphological and functional alterations in the vaginal tissue in a rat ovariectomy model and to show the differences between proximal and distal vagina. Methods., Six weeks following ovariectomy, vaginal tissues were examined under light and electron microscopy. Circularly cut distal and proximal tissues were studied in the organ bath under isometric tension and compared with age-matched controls. Contractile responses to electrical field stimulation (EFS), phenylephrine, carbachol, and the effects of alpha-1 and alpha-2 blockade on EFS-induced contractility were investigated. Relaxation responses to EFS and vardenafil were investigated in precontracted strips. Main Outcome Measures., Differences between control and ovariectomy groups in terms of vaginal tissue contractility and histomorphological properties. Results., Distal vagina showed different epithelial characteristics and a better-developed muscularis compared with proximal vagina. Ovariectomy caused thinning of the epithelium, severe degeneration in epithelial architecture, and smooth muscle atrophy. Contraction and relaxation responses of distal strips were significantly lower in ovariectomized rats. Contractile responses to neuropharmacological stimulation were insignificant in proximal strips of both groups. EFS-induced contractions in distal strips diminished significantly after alpha-1 and alpha-2 adrenergic blockade. EFS caused frequency-dependent relaxation responses in precontracted distal strips, which were significantly decreased after nitric oxide synthase inhibition. Conclusions., Ovariectomy causes significant alteration in rat vaginal tissue morphology and contractility. Contraction and relaxation responses of distal vagina are significantly greater compared with morphologically distinct proximal vagina. Alpha-1 and alpha-2 receptors are the main mediators of contraction in distal rat vaginal tissue whereas nitric oxide pathway may have at least a partial role in relaxation. Main mediators of the rat vaginal tissue relaxation and the effect of ovariectomy on this regulation are yet to be defined. Önol FF, Ercan F, and Tarcan T. The effect of ovariectomy on rat vaginal tissue contractility and histomorphology. J Sex Med 2006;3:233,241. [source] Increased bone density and resistance to ovariectomy-induced bone loss in FoxP3-transgenic mice based on impaired osteoclast differentiationARTHRITIS & RHEUMATISM, Issue 8 2010Mario M. Zaiss Objective Immune activation triggers bone loss. Activated T cells are the cellular link between immune activation and bone destruction. The aim of this study was to determine whether immune regulatory mechanisms, such as naturally occurring Treg cells, also extend their protective effects to bone homeostasis in vivo. Methods Bone parameters in FoxP3-transgenic (Tg) mice were compared with those in their wild-type (WT) littermate controls. Ovariectomy was performed in FoxP3-Tg mice as a model of postmenopausal osteoporosis, and the bone parameters were analyzed. The bones of RAG-1,/, mice were analyzed following the adoptive transfer of isolated CD4+CD25+ T cells. CD4+CD25+ T cells and CD4+ T cells isolated from FoxP3-Tg mice and WT mice were cocultured with monocytes to determine their ability to suppress osteoclastogenesis in vitro. Results FoxP3-Tg mice developed higher bone mass and were protected from ovariectomy-induced bone loss. The increase in bone mass was found to be the result of impaired osteoclast differentiation and bone resorption in vivo. Bone formation was not affected. Adoptive transfer of CD4+CD25+ T cells into T cell,deficient RAG-1,/, mice also increased the bone mass, indicating that Treg cells directly affect bone homeostasis without the need to engage other T cell lineages. Conclusion These data demonstrate that Treg cells can control bone resorption in vivo and can preserve bone mass during physiologic and pathologic bone remodeling. [source] The potential antioxidant effect of raloxifene treatment: a study on heart, liver and brain cortex of ovariectomized female ratsCELL BIOCHEMISTRY AND FUNCTION, Issue 3 2007Sibel Konyalioglu Abstract The antioxidant activity of some compounds buffer the free radicals generated either endogenously or exogenously, thus decreasing the potential damage mediated by oxidation. Recent studies documented that raloxifene has antioxidant properties in vitro. However, there are limited animal studies available to show raloxifene's antioxidant properties. We aimed to investigate the effects of raloxifene on antioxidant enzymes such as SOD, CAT and GPX, TrxR and the levels of GSH and MDA in heart, liver and brain cortex of ovariectomized female rats. Female Sprague Dawley rats weighing 300,350,g (n,=,24) were divided into three groups: (I) Eight non-ovariectomized rats were used as naive controls without any treatment (non-ovariectomized group, n,=,8). Five weeks after ovariectomy, (II) Ovariectomized placebo group (n,=,8) was given physiological saline, and (III) Raloxifene group (n,=,8) was given raloxifene 1,mg/kg,sc. daily for 12 days. Ovariectomy induced significant increases on SOD, GPX, CAT activity and MDA levels in brain, heart and liver tissues compared to non-ovariectomized rats (,p,<,0.05). Raloxifene treatment led to decreased levels of SOD activity in heart, GPX activity in brain and CAT activity in liver tissue when compared to ovariectomized group (,p,<,0.05) but there was no change in activity of TrxR in all groups. The levels of MDA in brain, heart and liver tissues increased in ovariectomized group when compared to non-overiectomized rats (,p,<,0.05). Raloxifene had a significant attenuating effect on the levels of MDA in brain and heart tissues. Our results also indicate that the levels of GSH in brain, heart and liver tissue decreased when compared to non-ovariectomized rats. Raloxifene treatment was observed to significantly increase the levels of GSH in brain and heart tissues (,p,<,0.05). However, there were insignificant differences for the GSH levels in liver tissues of ovariectomized placebo or raloxifene groups. In conclusion, our results demonstrate that raloxifene may be more effective against oxidative stress in heart and brain than in liver tissue. Copyright © 2006 John Wiley & Sons, Ltd. [source] Cerebral Thrombosis And Microcirculation Of The Rat During The Oestrous Cycle And After OvariectomyCLINICAL AND EXPERIMENTAL PHARMACOLOGY AND PHYSIOLOGY, Issue 1-2 2002H Ono SUMMARY 1. The effects of oestrogen on thrombogenesis and the cerebral microcirculation of the female rat were studied during the oestrous cycle and after ovariectomy. 2. Serum levels of oestradiol (E2) and plasma concentrations of nitric oxide (NO) metabolites were significantly greater at pro-oestrus than at dioestrus. Blood vessel diameter, mean red cell velocity, wall shear rate and blood flow at pro-oestrus were significantly higher than at dioestrus. Thrombotic tendency, assessed using a He,Ne laser-induced thrombosis model, was significantly decreased at pro-oestrus compared with dioestrus. 3. The long-term deprivation of oestrogen by ovariectomy significantly depressed serum levels of E2 and plasma concentrations of NO metabolites. Thrombotic tendency was significantly increased 4 weeks after ovariectomy. Vessel diameter, mean red cell velocity, wall shear rate and blood flow in pial arterioles were significantly reduced after ovariectomy. 4. Exogenous administration of oestrogen (17,-oestradiol) after surgery reversed the increased thrombotic tendency mediated by ovariectomy. 5. These results strongly indicate that oestrogen mediates beneficial effects on the cerebral microcirculation and moderates cerebral thrombotic mechanisms in the female rat. [source] Effects of Estrogen on Cardiac Electrophysiology in Female MiceJOURNAL OF CARDIOVASCULAR ELECTROPHYSIOLOGY, Issue 3 2002SAMIR SABA M.D. Estrogen and Cardiac Electrophysiology.Introduction: Understanding the molecular mechanisms that underlie gender- and hormonal-related differences in susceptibility to cardiac arrhythmias has been hampered by the lack of a suitable animal model. We examined the effect of hormonal status on the electrophysiologic (EP) properties of the mouse heart in an in vivo, closed chest model. Methods and Results: Fifty-three female C57/J mice aged 10 to 12 weeks were studied. Thirty-six mice underwent bilateral ovariectomies; 18 received estrogen (OVX + E) and 18 received placebo (OVX). Seventeen female mice underwent only sham surgery. All animals underwent in vivo EP studies. Select EP parameters were measured after quinidine treatment. Data were analyzed by a blinded observer. Compared with the intact female mice, the PR and AH intervals were significantly shorter in the OVX mice, and these parameters normalized with estrogen replacement (PR = 45.9 ± 4.5 msec in the intact mice, 42.1 ± 4.3 msec in the OVX group, and 46.9 ± 3.5 msec in the OVX + E group, P < 0.005; AH = 36.5 ± 4.9 msec in the intact mice, 34.4 ± 4.7 msec in the OVX group, and 38.8 ± 2.7 msec in the OVX + E group, P = 0.03). The right ventricular effective refractory period was significantly shorter in the OVX mice versus the intact mice, and this also normalized with estrogen replacement. Hormonal status did not significantly affect any other EP variable, including QT interval. Conclusion: In female mice, estrogen prolongs AV nodal conduction and the right ventricular effective refractory period. Taken together, these data suggest that hormonal status affects aspects of cardiac EP function. Future application of this mouse model will be helpful in determining the molecular pathways that mediate hormonal differences in cardiac EP. [source] Pubertal maturation modifies the regulation of insulin-like growth factor-I receptor signaling by estradiol in the rat prefrontal cortexDEVELOPMENTAL NEUROBIOLOGY, Issue 8 2008Amaya Sanz Abstract The transition from adolescence to adulthood is accompanied by substantial plastic modifications in the cerebral cortex, including changes in the growth and retraction of neuronal processes and in the rate of synaptic formation and neuronal loss. Some of these plastic changes are prevented in female rats by prepubertal ovariectomy. The ovarian hormone estradiol modulates neuronal differentiation and survival and these effects are in part mediated by the interaction with insulin-like growth factor-I (IGF-I). In this study, we have explored whether the activation by estradiol of some components of IGF-I receptor signaling is altered in the prefrontal cortex during puberty. Estradiol administration to rats ovariectomized after puberty resulted, 24 h after the hormonal administration, in a sustained phosphorylation of Akt and glycogen synthase kinase 3, in the prefrontal cortex. However, this hormonal effect was not observed in animals ovariectomized before puberty. These findings suggest that during pubertal maturation there is a programming by ovarian hormones of the future regulatory actions of estradiol on IGF-I receptor signaling in the prefrontal cortex. The modification in the regulation of IGF-I receptor signaling by estradiol during pubertal maturation may have implications for the developmental changes occurring in the prefrontal cortex in the transition from adolescence to adulthood. © 2008 Wiley Periodicals, Inc. Develop Neurobiol, 2008. [source] Aromatase expression and cell proliferation following injury of the adult zebra finch hippocampusDEVELOPMENTAL NEUROBIOLOGY, Issue 14 2007R. Scott Peterson Abstract Estrogens can be neuroprotective following traumatic brain injury. Immediately after trauma to the zebra finch hippocampus, the estrogen-synthetic enzyme aromatase is rapidly upregulated in astrocytes and radial glia around the lesion site. Brain injury also induces high levels of cell proliferation. Estrogens promote neuronal differentiation, migration, and survival naturally in the avian brain. We suspect that glia are a source of estrogens promoting cell proliferation after neural injury. To explore this hypothesis, we examined the spatial and temporal relationship between glial aromatase expression and cell proliferation after neural injury in adult female zebra finches. Birds were ovariectomized and given a blank implant or one filled with estradiol; some birds were also administered an aromatase inhibitor or vehicle. All birds received penetrating injuries to the right hippocampus. Twenty-four hours after lesioning, birds were injected once with BrdU to label mitotically active cells and euthanized 2 h, 24 h, or 7 days later. The brains were processed for double-label BrdU and aromatase immunocytochemistry. Injury-induced glial aromatase expression was unaffected by survival time and aromatase inhibition. BrdU labeling was significantly reduced at 24 h by ovariectomy and by aromatase inhibition; effects were partially reversed by E2 replacement. Irrespective of ovariectomy, the densities of aromatase immunoreactive astrocytes and BrdU-labeled cells at known distances from the lesion site were highly correlated. These data suggest that injury-induced glial aromatization may influence the reorganization of injured tissue by providing a rich estrogenic environment available to influence cellular incorporation. © 2007 Wiley Periodicals, Inc. Develop Neurobiol, 2007. [source] Changes in hyporesponsiveness to acute amphetamine and age differences in tyrosine hydroxylase immunoreactivity in the brain over adolescence in male and female ratsDEVELOPMENTAL PSYCHOBIOLOGY, Issue 5 2009Iva Z. Mathews Abstract We investigated hyposensitivity after amphetamine in early (postnatal Day 30; P30) and late (P45) adolescent rats compared to adults (P70) in experiment 1. Locomotor activity was measured for 1,hr after the first (acute) and second (24,hr later) injection of amphetamine (0.5 or 1.5,mg/kg). P30 and P45 rats were transiently hypoactive compared to adults, as indicated by reduced locomotor activity after acute amphetamine and enhanced activity after the second injection in adolescents only. In experiment 2, ovariectomy did not alter locomotor activity during habituation at any age compared to intact rats, and, as for intact adolescents, ovariectomized adolescents continued to be less active after amphetamine than adults, suggesting gonadal immaturity alone cannot account for age differences in experiment 1. However, ovariectomy attenuated the increase in activity after the second treatment. In experiment 3 involving untreated rats, tyrosine hydroxylase immunoreactivity was reduced in P30, P40, and P50 compared to P90 rats in the nucleus accumbens core and the medial prefrontal cortex. Thus, adolescents may have an increased threshold of behavioral activation that can be overcome with either a higher dose or with repeated amphetamine treatment, and may be related to changes in the dopamine system over development. © 2009 Wiley Periodicals, Inc. Dev Psychobiol 51: 417,428, 2009. [source] Ovariectomy increases vascular calcification via the OPG/RANKL cytokine signalling pathwayEUROPEAN JOURNAL OF CLINICAL INVESTIGATION, Issue 4 2008B. G. Choi ABSTRACT Background, Observational studies suggest a strong relationship between menopause and vascular calcification. Receptor activator of nuclear factor-,, ligand (RANKL) and osteoprotegerin (OPG) are critical regulators of bone remodelling and modulate vascular calcification. We assessed the hypothesis that ovariectomy increases vascular calcification via the OPG/RANKL axis. Materials and methods, Age-matched sexually mature rabbits were randomized to ovariectomy (OVX, n = 12) or sham procedure (SHAM, n = 12). One month post-procedure, atherosclerosis was induced by 15 months 0·2%-cholesterol diet and endothelial balloon denudations (at months 1 and 3). Aortic atherosclerosis was assessed in vivo by magnetic resonance imaging (MRI) at months 9 and 15. At sacrifice, aortas were harvested for ex vivo microcomputed tomography (µCT) and molecular analysis of the vascular tissue. Results, Vascular calcification density and calcific particle number were significantly greater in OVX than SHAM (8·4 ± 2·8 vs. 1·9 ± 0·6 mg cm,3, P = 0·042, and 94 ± 26 vs. 33 ± 7 particles cm,3, P = 0·046, respectively). Calcification morphology, as assessed by the arc angle subtended by the largest calcific particle, showed no difference between groups (OVX 33 ± 7° vs. SHAM 33 ± 5°, P = 0·99). By Western blot analysis, OVX increased the vascular OPG:RANKL ratio by 66%, P = 0·029, primarily by decreasing RANKL (P = 0·019). At month 9, MRI demonstrated no difference in atheroma volume between OVX and SHAM, and no significant change was seen by the end of the study. Conclusions, In contrast to bone, vascular OPG:RANKL ratio increased in response to ovariectomy with a corresponding fourfold increase in arterial calcification. This diametrical organ-specific response may explain the comorbid association of osteoporosis with calcifying atherosclerosis in post-menopausal women. [source] Serotonin mediates oestrogen stimulation of cell proliferation in the adult dentate gyrusEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 9 2001Mounira Banasr Abstract Characterizing the mechanisms by which endogenous factors stimulate neurogenesis is of special interest in view of the possible implication of newly generated cells in hippocampal functions or disorders. The aim of this study was to determine whether serotonin (5-HT) and oestradiol (E2) act through a common pathway to increase cell proliferation in the adult dentate gyrus (DG). We also investigated the effects of long-lasting changes in oestrogen levels on cell proliferation. Combining ovariectomy with inhibition of 5-HT synthesis using p -chlorophenylalanine (PCPA) treatment produced approximately the same decreases in the number of bromodeoxyuridine (BrdU) and PSA-NCAM immunolabelled cells in the subgranular layer as ovariectomy alone. Administration of 5-hydroxytryptophan (5-HTP) restored cell proliferation primarily decreased by ovariectomy, whereas oestradiol was unable to reverse this change in ovariectomized rats treated with PCPA. These findings demonstrate that 5-HT mediates oestrogen stimulation of cell proliferation in adult dentate gyrus. However, increase in ovarian hormones during pregnancy has no effect on dentate cell proliferation. This finding suggests that concomitant changes in other factors, such as glucocorticoids, may counterbalance the positive regulation of cell proliferation by 5-HT and oestradiol. Finally, oestrogen may regulate structural plasticity by stimulating PSA-NCAM expression independently of neurogenesis, as shown for instance by the increases in the number of PSA-NCAM labelled cells in pregnants. As 5-HT and oestrogen are involved in mood disorders, our data suggest that the positive regulation of cell proliferation and neuroplasticity by these two factors may contribute to restore hippocampal connectivity in depressive patients. [source] Estrogen is involved in early alcohol-induced liver injury in a rat enteral feeding modelHEPATOLOGY, Issue 1 2000Ming Yin The aim of this study was to investigate whether reduction in blood estrogen by removal of the ovaries would decrease the sensitivity of female rats to early alcohol-induced liver injury using an enteral ethanol feeding model, and if so, whether estrogen replacement would compensate. Livers from ovariectomized rats with or without estrogen replacement after 4 weeks of continuous ethanol exposure were compared with nonovariectomized rats in the presence or absence of ethanol. Ethanol increased serum alanine transaminase (ALT) levels from 30 ± 6 to 64 ± 7 U/L. This effect was blocked by ovariectomy (31 ± 7) and totally reversed by estrogen replacement (110 ± 23). Ethanol increased liver weight and fat accumulation, an effect that was minimized by ovariectomy and reversed partially by estrogen replacement. Infiltrating leukocytes were increased 6.7-fold by ethanol, an effect that was blunted significantly by ovariectomy and reversed by estrogen replacement. Likewise, a similar pattern of changes was observed in the number of necrotic hepatocytes. Blood endotoxin and hepatic levels of CD14 messenger RNA (mRNA) and protein were increased by ethanol. This effect was blocked in ovariectomized rats and elevated by estrogen replacement. Moreover, Kupffer cells isolated from ethanol-treated rats with estrogen replacement produced more tumor necrosis factor , (TNF-,) than those from control and ovariectomized rats. It is concluded, therefore, that the sensitivity of rat liver to alcohol-induced injury is directly related to estrogen, which increases endotoxin in the blood and CD14 expression in the liver, leading to increased TNF-, production. [source] Effect of ovariectomy and ad libitum feeding on body composition, thyroid status, ghrelin and leptin plasma concentrations in female dogs,JOURNAL OF ANIMAL PHYSIOLOGY AND NUTRITION, Issue 1-2 2006I. Jeusette Summary The objective of this study was to evaluate the effects of ovariectomy (i) and ad libitum feeding (ii) on energy intake, body weight (BW), body composition, thyroid status, leptin and ghrelin plasma concentrations. Four young adult female Beagle dogs were fed a maintenance diet for 6 weeks prior to ovariectomy, then 6 months after. Food allowance was adjusted in order to maintain optimal BW. Then, a diet slightly higher in energy concentration was fed ad libitum for 4 months. The maintenance diet was then fed ad libitum for one additional month. The maintenance of optimal BW after ovariectomy required a significant decrease in energy allowance. No increase in fat mass was observed. Ghrelin concentration remained unchanged. During the first month of ad libitum feeding, plasma ghrelin concentration and energy intake increased, then they decreased. Mean BW, plasma leptin, thyrotropin (TSH), total triiodothyronine (TT3) and total thyroxine (TT4) concentrations significantly increased over the study. The BW increase was exclusively due to an increase in body fat. In conclusion, energy allowance should be strictly controlled in spayed female dogs. The results suggest that in dogs, thyroid hormones, leptin and ghrelin concentrations change in response to a positive energy balance in an attempt to limit weight gain. However, the significant weight gain shows that this goal was not achieved. [source] Sexual dimorphism in cortical bone size and strength but not density is determined by independent and time-specific actions of sex steroids and IGF-1: Evidence from pubertal mouse modelsJOURNAL OF BONE AND MINERAL RESEARCH, Issue 3 2010Filip Callewaert Abstract Although it is well established that males acquire more bone mass than females, the underlying mechanism and timing of this sex difference remain controversial. The aim of this study was to assess the relative contribution of sex steroid versus growth hormone,insulin-like growth factor 1 (GH,IGF-1) action to pubertal bone mass acquisition longitudinally in pubertal mice. Radial bone expansion peaked during early puberty (3 to 5 weeks of age) in male and female mice, with significantly more expansion in males than in females (+40%). Concomitantly, in 5,week old male versus female mice, periosteal and endocortical bone formation was higher (+70%) and lower (,47%), respectively, along with higher serum IGF-1 levels during early puberty in male mice. In female mice, ovariectomy increased radial bone expansion during early puberty as well as the endocortical perimeter. In male mice, orchidectomy reduced radial bone expansion only during late puberty (5 to 8 weeks of age), whereas combined androgen and estrogen deficiency modestly decreased radial bone expansion during early puberty, accompanied by lower IGF-1 levels. GHRKO mice with very low IGF-1 levels, on the other hand, showed limited radial bone expansion and no skeletal dimorphism. From these data we conclude that skeletal sexual dimorphism is established during early puberty and depends primarily on GH,IGF-1 action. In males, androgens and estrogens have stimulatory effects on bone size during late and early puberty, respectively. In females, estrogens limit bone size during early puberty. These longitudinal findings in mice provide strong evidence that skeletal dimorphism is determined by independent and time-specific effects of sex steroids and IGF-1. © 2010 American Society for Bone and Mineral Research [source] Long-Term Protective Effects of Zoledronic Acid on Cancellous and Cortical Bone in the Ovariectomized Rat,JOURNAL OF BONE AND MINERAL RESEARCH, Issue 4 2008Jürg A Gasser PhD Abstract Current bisphosphonate therapies effectively prevent bone loss in postmenopausal women. We studied the effect of a single intravenous dose of ZOL in ovariectomized rats. Protection from bone loss was dose dependent, lasting for up to 32 weeks, supporting the rationale for an annual intravenous dosing regimen of ZOL for treatment of postmenopausal osteoporosis. Introduction: Once-yearly dosing with zoledronic acid (ZOL) 5 mg can increase BMD and reduce fracture rate in postmenopausal women with low BMD. The primary objective of this study was to determine the duration of bone protective effects of a single dose of ZOL in ovariectomized rats, an animal model of postmenopausal osteopenia. Secondary objectives were to determine the effects on bone turnover and mechanical properties. Materials and Methods: Female Wistar rats (10 per group) received single intravenous doses of ZOL 0.8, 4, 20, 100, or 500 ,g/kg, alendronate 200 ,g/kg, or isotonic saline 4 days before bilateral ovariectomy. Sham-operated controls were pretreated with saline. Mass and density of cancellous and cortical bone (pQCT) were measured at 4-wk intervals for 32 wk. Bone architecture (,CT), bone formation dynamics (fluorochrome label-based histomorphometry), and biomechanical strength in compression testing were also assessed at 32 wk. Results: Ovariectomy-associated BMD loss was significantly attenuated for 32 wk by ZOL ,4 ,g/kg for total BMD, ZOL ,20 ,g/kg for cortical BMD, and ZOL ,4 ,g/kg for cancellous BMD (p < 0.01 versus ovariectomized controls). Alendronate 200 ,g/kg was of equivalent potency to ZOL 20 ,g/kg. Ovariectomy-associated decreases in trabecular architectural parameters were dose-dependently attenuated by ZOL. Alendronate 200 ,g/kg was equivalent to ZOL 20 ,g/kg. The bone resorption marker TRACP5b indicated transient suppression of elevated osteoclast activity by ZOL relative to OVX-rats even at the lowest dose of 0.8 ,g/kg, whereas at 100,500 ,g/kg, the effect was significant relative to the OVX control for the entire duration of the study of 32 wk. Bone formation parameters were not significantly affected by ZOL 20 ,g/kg but were significantly reduced by ZOL 100,500 ,g/kg. Alendronate 200 ,g/kg was equivalent to ZOL 100 ,g/kg. ZOL produced dose-related improvements in bone strength parameters after ovariectomy. Alendronate 200 ,g/kg was of similar potency to ZOL 20 ,g/kg. Conclusions: The duration and magnitude of the bone-protecting effect of a single intravenous dose of ZOL in ovariectomized rats is dose dependent and lasts for up to 32 wk. Compared with alendronate, ZOL shows 10-fold higher potency in preventing bone loss. These data support the use of an annual intravenous ZOL dosing regimen for the treatment of osteoporosis. [source] Effect of Blockade of TNF-, and Interleukin-1 Action on Bone Resorption in Early Postmenopausal Women,,JOURNAL OF BONE AND MINERAL RESEARCH, Issue 5 2007Natthinee Charatcharoenwitthaya Abstract After acute estrogen withdrawal in postmenopausal women, administration of anakinra or etanercept, specific blockers of IL-1 and TNF-,, respectively, reduced the rise in bone resorption markers to about one half of that in controls. This is consistent with an important role for these immune cytokines in mediating the effect of estrogen deficiency on bone. Introduction: Studies in rodents have implicated increased production of interleukin (IL)-1, and TNF-, as mediators of bone loss after ovariectomy, but their roles are unclear in humans whose immune system differs markedly from that of rodents. Materials and Methods: We administered transdermal estradiol, 0.1 mg/d, for 60 days to 42 early postmenopausal women. Estrogen treatment was discontinued, and subjects were randomly assigned to intervention groups receiving 3 wk of injections with 0.9% saline, anakinra 100 mg/d, or etanercept 25 mg/twice weekly. Bone turnover was assessed by measuring serum carboxyl-terminal telopeptide of type 1 collagen (CTX) and amino-terminal telopeptide of type 1 collagen (NTX), markers for bone resorption, and serum amino-terminal propeptide of type 1 collagen (P1NP), a marker for bone formation. Results were expressed as percent change in markers from baseline (last 2 days of estrogen treatment and days 20 and 21 of intervention). Results: The percent changes from baseline during intervention for serum CTX, urine NTX, and serum PINP, respectively, were 43.3 ± 8.0%, 12.0 ± 7.1%, and ,41.0 ± 2.5% for the control group; 25.9 ± 6.3%, 9.5 ± 4.0%, and ,37.8 ± 3.0% for the anakinra group; and 21.7 ± 5.0%, 0.32 ± 3.82%, and ,34.5 ± 3.9% for the etanercept group. Compared with the control group, the blunting of the increase in serum CTX fell just below the level of significance (p = 0.10) after anakinra treatment, whereas the blunting of the increase in serum CTX (p = 0.034) and in urine NTX (p = 0.048) were significant after etanercept treatment. Other changes were not significant. Conclusions: The data are consistent with a role for TNF-,, and possibly for IL-1,, in mediating increased bone resorption during estrogen deficiency in women. Although either cytokine blocker reduced serum CTX by about one half, the effect of combined blockade could not be tested because of concerns about toxicity. The data do not exclude direct or indirect contributory roles for RANKL or for other cytokines. [source] Accentuated Ovariectomy-Induced Bone Loss and Altered Osteogenesis in Heterozygous N-Cadherin Null Mice,,JOURNAL OF BONE AND MINERAL RESEARCH, Issue 12 2006Chung Fang Lai Abstract Ovariectomy-induced bone loss is accentuated in mice with germline Cdh2 haploinsufficiency, the result of a decreased osteoblastogenesis in the face of normal osteoclast number. Reduced N-cadherin abundance in these mice decreases cell,cell adhesion and alters signaling pathways important for osteoblast commitment and differentiation, thus providing in vivo evidence that N-cadherin,mediated cell,cell interactions are involved in homeostatic responses to increased bone remodeling. Introduction: We have shown that targeted expression of a dominant negative truncated form of N-cadherin (Cdh2) delays acquisition of peak bone mass in mice and retards osteoblast differentiation. We tested the role of this molecule in the skeletal homeostatic response to ovariectomy in mice with germline Cdh2 haploinsufficiency. Materials and Methods: Heterozygous Cdh2 null (Cdh2+/,) and wildtype mice were ovariectomized and followed up to 13 weeks by in vivo radiodensitometric and ex vivo histologic assessment of bone mass and turnover. Cells isolated from wildtype and Cdh2+/, mice were used to determine the alterations in bone cell function produced by partial loss of N-cadherin. Results: Bone mass was not significantly different between Cdh2+/, and wildtype littermates, but on ovariectomy, bone loss in Cdh2+/, mice was initially slower, but with time it became significantly greater than in wildtype mice. This accentuated bone loss was associated with lower osteoblast number and serum osteocalcin levels, with no differences in bone resorption. Although development of calcified nodules was faster in calvaria cells isolated from Cdh2+/, mice relative to Cdh2+/+ cells, bone marrow osteogenic precursors were lower in the former than in the latter genotypes. Cdh2 expression was downregulated with differentiation in wildtype calvaria cells, whereas cadherin-11 abundance remained unchanged. Furthermore, cell,cell adhesion (postconfluence) was decreased among heterozygous calvaria cells, as was cell proliferation (preconfluence), relative to wildtype cells. Finally, the abundance and cellular distribution of ,-catenin was minimally decreased in Cdh2+/, cells, whereas mitogen-activated protein kinase (MAPK) signaling was more active in Cdh2 insufficient cells. Conclusions:Cdh2 is involved in the homeostatic bone formation response to ovariectomy, presumably by regulating osteoprogenitors number and differentiation through stabilization of cell,cell adhesion and/or signaling modulation. [source] |