Ovariectomized Females (ovariectomized + female)

Distribution by Scientific Domains


Selected Abstracts


Social and sexual incentive properties of estrogen receptor ,, estrogen receptor ,, or oxytocin knockout mice

GENES, BRAIN AND BEHAVIOR, Issue 1 2008
A. Ågmo
Social and sexual incentive motivation, defined as the intensity of approach to a social and a sexual incentive, respectively, were studied in female Swiss Webster mice. In the first experiment, the social incentive was a castrated mouse of the same strain as the females, whereas the sexual incentive was an intact male mouse of the same strain. Ovariectomized females were first tested after oil treatment and then after administration of estradiol benzoate + progesterone in doses sufficient to induce full receptivity. The hormones increased sexual incentive motivation while leaving social incentive motivation unaffected. This suggests that sexual incentive motivation in the female mouse is dependent on ovarian hormones. In the next experiment, ovariectomized females were tested with an intact, male estrogen receptor , knockout and its wild type as incentives, first without hormones and then when fully receptive. There were no differences in incentive properties between the wild type and the knockout. In a similar experiment, we used an intact male estrogen receptor , knockout and its corresponding wild type as incentives. The wild type turned out to be a more attractive social incentive than the knockout, while they were equivalent as sexual incentives. Finally, an intact male oxytocin knockout and its wild type were used as incentives. The knockout turned out to be a superior incentive, particularly a superior sexual incentive. The fact that the estrogen receptor , and oxytocin knockouts have incentive properties different from their wild types may be important to consider in studies of these knockouts' sociosexual behaviors. [source]


Daily rhythms and sex differences in vasoactive intestinal polypeptide, VIPR2 receptor and arginine vasopressin mRNA in the suprachiasmatic nucleus of a diurnal rodent, Arvicanthis niloticus

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 8 2009
M. M. Mahoney
Abstract Diurnal and nocturnal animals differ with respect to the time of day at which the ovulatory surge in luteinizing hormone occurs. In some species this is regulated by the suprachiasmatic nucleus (SCN), the primary circadian clock, via cells that contain vasoactive intestinal polypeptide (VIP) and vasopressin (AVP). Here, we evaluated the hypothesis that chronotype differences in the timing of the luteinizing hormone surge are associated with rhythms in expression of the genes that encode these neuropeptides. Diurnal grass rats (Arvicanthis niloticus) were housed in a 12/12-h light,dark cycle and killed at one of six times of day (Zeitgeber time 1, 5, 9, 13, 17, 21; ZT 0 = lights-on). In-situ hybridization was used to compare levels of vip, avp and VIP receptor mRNA (vipr2) in the SCN of intact females, ovariectomized females, ovariectomized females given estradiol and intact males. We found a sex difference in vip rhythms with a peak occurring at ZT 13 in males and ZT 5 in intact females. In all groups avp mRNA rhythms peaked during the day, from ZT 5 to ZT 9, and had a trough in the dark at ZT 21. There was a modest rhythm and sex difference in the pattern of vipr2. Most importantly, the patterns of each of these SCN rhythms relative to the light,dark cycle resembled those seen in nocturnal rodents. Chronotype differences in timing of neuroendocrine events associated with ovulation are thus likely to be generated downstream of the SCN. [source]


Social and sexual incentive properties of estrogen receptor ,, estrogen receptor ,, or oxytocin knockout mice

GENES, BRAIN AND BEHAVIOR, Issue 1 2008
A. Ågmo
Social and sexual incentive motivation, defined as the intensity of approach to a social and a sexual incentive, respectively, were studied in female Swiss Webster mice. In the first experiment, the social incentive was a castrated mouse of the same strain as the females, whereas the sexual incentive was an intact male mouse of the same strain. Ovariectomized females were first tested after oil treatment and then after administration of estradiol benzoate + progesterone in doses sufficient to induce full receptivity. The hormones increased sexual incentive motivation while leaving social incentive motivation unaffected. This suggests that sexual incentive motivation in the female mouse is dependent on ovarian hormones. In the next experiment, ovariectomized females were tested with an intact, male estrogen receptor , knockout and its wild type as incentives, first without hormones and then when fully receptive. There were no differences in incentive properties between the wild type and the knockout. In a similar experiment, we used an intact male estrogen receptor , knockout and its corresponding wild type as incentives. The wild type turned out to be a more attractive social incentive than the knockout, while they were equivalent as sexual incentives. Finally, an intact male oxytocin knockout and its wild type were used as incentives. The knockout turned out to be a superior incentive, particularly a superior sexual incentive. The fact that the estrogen receptor , and oxytocin knockouts have incentive properties different from their wild types may be important to consider in studies of these knockouts' sociosexual behaviors. [source]


Gender Differences in the Expression of Galanin and Vasoactive Intestinal Peptide in Oestrogen-Induced Prolactinomas of Fischer 344 Rats

JOURNAL OF NEUROENDOCRINOLOGY, Issue 1 2004
G. G. Piroli
Abstract We have previously described a sexual dimorphism in oestrogen-induced anterior pituitary tumorigenesis in Fischer 344 rats, with female tumours averaging twice the size of those of males. Neonatal androgenization of female Fischer 344 rats with 100 µg of testosterone propionate reverted that effect, causing a ,male-like' phenotype. The peptides galanin and vasoactive intestinal peptide (VIP) are possible mediators of oestrogen effects on the anterior pituitary, including hyperprolactinemia and lactotroph proliferation. To further extend our previous findings, we investigated the expression of galanin and VIP in the anterior pituitary of control and oestrogenized male, female and neonatally androgenized female Fischer 344 rats. At 3 months of age, rats were deprived of their gonads and divided into control and diethylstilbestrol (DES)-treated groups. In the anterior pituitary of control rats, galanin and VIP immunoreactive cells were absent. However, in DES-treated rats, pituitaries from normal ovariectomized females showed higher number of galanin and VIP positive cells than pituitaries from neonatally androgenized ovariectomized females and gonadectomized males. This pattern correlated with changes in anterior pituitary weight and serum prolactin. Our study suggests that sexual differences in oestrogen-induced pituitary tumorigenesis could be due to the differential expression of galanin and VIP. Furthermore, our data support the fact that neonatal exposure to androgens, as in normal males and androgenized females, may condition the response of the pituitary gland to oestrogens in adult life. [source]