Outlet Streams (outlet + stream)

Distribution by Scientific Domains


Selected Abstracts


Kinetics of lactose hydrolysis by ,-galactosidase of Kluyveromyces lactis immobilized on cotton fabric

BIOTECHNOLOGY & BIOENGINEERING, Issue 2 2003
Quinn Zhengkun Zhou
Abstract A mathematic model for describing the Michaelis-Menten-type reaction kinetics with product competitive inhibition and side-reaction is proposed. A multiresponse nonlinear simulation program was employed to determine the coefficients of a four-parameter rate expression. The rate expression was compared with the conventional Michaelis-Menten reaction rate models with and without product inhibition. Experimental data were obtained using ,-galactosidase of Kluyveromyces lactis immobilized on cotton fabric in a batch system at a temperature of 37°C and at various initial concentrations of dissolved lactose ranging from 3,12.5% (w/v). The reaction is followed by concentration changes with time in the tank. Samples were obtained after the outlet stream of the packed bed reactor is mixed in a well-stirred tank. High-performance liquid chromatography (HPLC) was applied to monitor the concentrations of all the sugars (reactants as well as products). The four-parameter rate model is featured with a term to describe the formation of trisaccharides, a side-reaction of the enzymatic hydrolysis. The proposed model simulates the process of lactose hydrolysis and the formation of glucose and galactose, giving better accuracy compared with the previous models. © 2002 Wiley Periodicals, Inc. Biotechnol Bioeng 81: 127,133, 2003. [source]


Effects of upstream lakes and nutrient limitation on periphytic biomass and nitrogen fixation in oligotrophic, subalpine streams

FRESHWATER BIOLOGY, Issue 11 2007
AMY M. MARCARELLI
Summary 1. We conducted bioassays of nutrient limitation to understand how macronutrients and the position of streams relative to lakes control nitrogen (N2) fixation and periphytic biomass in three oligotrophic Rocky Mountain catchments. We measured periphytic chlorophyll- a (chl- a) and nitrogen-fixation responses to nitrogen (N) and phosphorus (P) additions using nutrient-diffusing substrata at 19 stream study sites, located above and below lakes within the study catchments. 2. We found that periphytic chl- a was significantly co-limited by N and P at 13 of the 19 sites, with sole limitation by P observed at another four sites, and no nutrient response at the final two sites. On average, the addition of N, P and N + P stimulated chl- a 35%, 114% and 700% above control values respectively. The addition of P alone stimulated nitrogen fixation by 2500% at five of the 19 sites. The addition of N, either with or without simultaneous P addition, suppressed nitrogen fixation by 73% at nine of the 19 sites. 3. Lake outlet streams were warmer and had higher dissolved organic carbon concentrations than inlet streams and those further upstream, but position relative to lakes did not affect chl- a and nitrogen fixation in the absence of nutrient additions. Chl- a response to nutrient additions did not change along the length of the study streams, but nitrogen fixation was suppressed more strongly by N, and stimulated more strongly by P, at lower altitude sites. The responses of chl- a and nitrogen fixation to nutrients were not affected by location relative to lakes. Some variation in responses to nutrients could be explained by nitrate and/or total N concentration. 4. Periphytic chl- a and nitrogen fixation were affected by nutrient supply, but responses to nutrients were independent of stream position in the landscape relative to lakes. Understanding interactions between nutrient supply, nitrogen fixation and chl- a may help predict periphytic responses to future perturbations of oligotrophic streams, such as the deposition of atmospheric N. [source]


Comparison of chemical wet scrubbers and biofiltration for control of volatile organic compounds using GC/MS techniques and kinetic analysis

JOURNAL OF CHEMICAL TECHNOLOGY & BIOTECHNOLOGY, Issue 10 2005
James R Kastner
Abstract Increasing public concerns and EPA air regulations in non-attainment zones necessitate the remediation of volatile organic compounds (VOCs) generated in the poultry-rendering industry. Wet scrubbers using chlorine dioxide (ClO2) have low overall removal efficiencies due to lack of reactivity with aldehydes. Contrary to wet scrubbers, a biofilter system successfully treated the aldehyde fraction, based on GC/MS analysis of inlet and outlet streams. Total VOC removal efficiencies ranged from 40 to 100% for the biofilter, kinetic analysis indicated that the overall removal capacity approached 25 g m,3 h,1, and aldehyde removal efficiency was significantly higher compared with chemical wet scrubbers. Process temperatures monitored in critical unit operations upstream from the biofilter varied significantly during operation, rising as much as 30 °C within a few minutes. However, the outlet air temperature of a high intensity scrubber remained relatively constant at 40 °C, although the inlet air temperature fluctuated from 50 to 65 °C during monitoring. These data suggest a hybrid process combining a wet scrubber and biofilter in series could be used to improve overall VOC removal efficiencies and process stability. Copyright © 2005 Society of Chemical Industry [source]


Survival and growth of brown trout Salmo trutta L. embryos and the timing of hatching and emergence in two boreal lake outlet streams

JOURNAL OF FISH BIOLOGY, Issue 4 2008
J. Syrjänen
Survival, growth and hatching of brown trout Salmo trutta embryos were studied using in situ incubation experiments in two lake outlet streams in Finland. The experimental design in both streams included an outlet site and a reference site far downstream. The date of hatching was recorded and the Elliott,Hurley model was then used to predict the time of emergence based on water temperature. For data analyses, the incubation period was divided into ,winter' (from fertilization to mid March) and ,spring' (from mid March until the end of the experiment). Temperature of the large-lake outlet remained at 1° C through the winter, while in other sites temperature was close to 0° C. In spring, temperature increased more slowly in the large-lake outlet. The survival of embryos was overall very high, from 83 to 98%, and they were larger in the outlets than in the downstream sites. Embryos hatched at the large-lake outlet in March, and 3,5 weeks later in the other sites. Although there were considerable between-site differences in hatching intervals, difference in expected 50% emergence dates of the earliest and latest site was only 4 days. Thus, any growth advantage that the outlet embryos had in winter disappeared by the end of the alevin period. Lake outlets, however, may be important for age 0 year brown trout later during the summer when other stream habitats do not provide adequate food resources. [source]