Home About us Contact | |||
Outflow Concentration (outflow + concentration)
Selected AbstractsThe effect of drawdown on suspended solids and phosphorus export from Columbia Lake, Waterloo, CanadaHYDROLOGICAL PROCESSES, Issue 5 2004Mike Shantz Abstract This study examines the effect of drawdown on the timing and magnitude of suspended solids and associated phosphorus export from a 12 ha reservoir located in an urbanized watershed in southern Ontario, Canada. Water level in Columbia Lake was lowered by 1·15 m over a 2-week period in November 2001. The total phosphorus (TP) concentrations ranged from 63 to 486 µg L,1 in Columbia Lake and 71 to 373 µg L,1 at its outflow. All samples exceeded the Provincial Water Quality Objective of 30 µg TP L,1. Outflow concentrations of suspended solids and TP increased significantly with decreasing lake level and were attributed to the resuspension of cohesive bottom sediments that occurred at a critical threshold lake level (0·65 m below summer level). Suspended solids at the outflow consisted of flocculated cohesive materials with a median diameter (D50) of c. 5 µm. Particulate organic carbon accounted for 8·5% of the suspended solids export by mass. A total mass of 18·5 t of suspended solids and 62·6 kg TP was exported from Columbia Lake, which represents a significant pulse of sediment-associated P to downstream environments each autumn during drawdown. The downstream impacts of this release can be minimized if the water level in Columbia Lake is lowered no more than 0·5 m below summer levels. Copyright © 2004 John Wiley & Sons, Ltd. [source] Can Contaminant Transport Models Predict Breakthrough?GROUND WATER MONITORING & REMEDIATION, Issue 4 2000Wei-Shyuan "Stone" Peng A solute breakthrough curve measured during a two-well tracer test was successfully predicted in 1986 using specialized contaminant transport models. Water was injected into a confined, unconsolidated sand aquifer and pumped out 125 feet (38.3 m) away at the same steady rate. The injected water was spiked with bromide for over three days; the outflow concentration was monitored for a month. Based on previous tests, the horizontal hydraulic conductivity of the thick aquifer varied by a factor of seven among 12 layers. Assuming stratified flow with small dispersivities, two research groups accurately predicted breakthrough with three-dimensional (12-layer) models using curvilinear elements following the arc-shaped flowlines in this test. Can contaminant transport models commonly used in industry, that use rectangular blocks, also reproduce this breakthrough curve? The two-well test was simulated with four MODFLOW-based models, MT3D (FD and HMOC options), MODFLOWT, MOC3D, and MODFLOW-SURFACT. Using the same 12 layers and small dispersivity used in the successful 1986 simulations, these models fit almost as accurately as the models using curvilinear blocks. Subtle variations in the curves illustrate differences among the codes. Sensitivities of the results to number and size of grid blocks, number of layers, boundary conditions, and values of dispersivity and porosity are briefly presented. The fit between calculated and measured breakthrough curves degenerated as the number of layers and/or grid blocks decreased, reflecting a loss of model predictive power as the level of characterization lessened. Therefore, the breakthrough curve for most field sites can be predicted only qualitatively due to limited characterization of the hydrogeology and contaminant source strength. [source] Uptake and Dispersion of Metformin in the Isolated Perfused Rat LiverJOURNAL OF PHARMACY AND PHARMACOLOGY: AN INTERNATI ONAL JOURNAL OF PHARMACEUTICAL SCIENCE, Issue 8 2000CHEN-HSI CHOU Although metformin is a widely used oral antihyperglycaemic, the exact mechanisms of its cellular uptake and action remain obscure. In this study the hepatic extraction and disposition kinetics of metformin were investigated by use of an isolated in-situ rat liver preparation. The liver was perfused in single-pass mode with protein-free Krebs bicarbonate medium at a flow rate of 20mLmin,1. During constant infusion with 1 mgL,1 metformin hydrochloride the hepatic uptake of metformin approached equilibrium within 10 min. The steady-state availability, F, determined from the ratio of outflow concentration to input concentration, was 0.99±0.02 (mean±s.d., n=4). The outflow profile of metformin resulting from a bolus injection of 25 ,g into the portal vein, had a sharp peak then a slower declining terminal phase. The mean transit time (MTT; 49.5±14.5, n = 6) and normalized variance (CV2; 4.13±0.05) of the hepatic transit times of metformin were estimated by numerical integration from the statistical moments of the outflow data. The volume of distribution of metformin in the liver (1.58±0.28 mL (g liver),1) was estimated from its MTT. The volume of distribution is greater than the water space of liver, indicating that metformin enters the hepatic aqueous space and becomes distributed among cellular components. The magnitude of CV2 for metformin is greater than for the vascular marker sucrose, suggesting that distribution of metformin into hepatic tissue is not instantaneous. In conclusion, hepatic uptake of metformin is rate-limited by a permeability barrier. Although metformin is accumulated in the liver, the organ does not extract it. [source] Utilization of common ditch vegetation in the reduction of fipronil and its sulfone metabolitePEST MANAGEMENT SCIENCE (FORMERLY: PESTICIDE SCIENCE), Issue 12 2008Robert Kröger Abstract BACKGROUND: Fipronil, a phenylpyrazole insecticide, and its oxidative sulfone metabolite are two potential pollutants from treated rice and cotton production. A consequence of these pollutants occurring in surface runoff is degradation of downstream aquatic ecosystems. Utilization of primary intercept drainage ditches as management practices to reduce fipronil concentrations and loads has not been examined. This study used ditch mesocosms planted with monospecific stands of common emergent wetland vegetation to determine if certain plant species were more proficient in fipronil mitigation. RESULTS: Three replicates of four plant species were compared against a non-vegetated control to determine differences in water column outflow concentrations (µg L,1) and loads (µg). There were no significant differences between vegetated and control treatments in outflow concentrations (F = 0.35, P = 0.836) and loads (F = 0.35, P = 0.836). The range of fipronil reduction was 28,45% for both concentration and load. Unlike fipronil, fipronil sulfone concentrations and load increased by 96,328%. CONCLUSION: The increase in fipronil sulfone was hypothesized as a direct consequence of oxidation of fipronil within each mesocosm. The type of ditch vegetation had no effect on fipronil reduction. Future research needs to examine initial concentrations and hydraulic retention times to examine potential changes in reduction capacities. Copyright © 2008 Society of Chemical Industry [source] |