Outer Retina (outer + retina)

Distribution by Scientific Domains


Selected Abstracts


Oxidative damage is a potential cause of cone cell death in retinitis pigmentosa

JOURNAL OF CELLULAR PHYSIOLOGY, Issue 3 2005
JiKui Shen
Retinitis pigmentosa (RP) is a prevalent cause of blindness caused by a large number of different mutations in many different genes. The mutations result in rod photoreceptor cell death, but it is unknown why cones die. In this study, we tested the hypothesis that cones die from oxidative damage by performing immunohistochemical staining for biomarkers of oxidative damage in a transgenic pig model of RP. The presence of acrolein- and 4-hydroxynonenal-adducts on proteins is a specific indicator that lipid peroxidation has occurred, and there was strong immunofluorescent staining for both in cone inner segments (IS) of two 10-month-old transgenic pigs in which almost all rods had died, compared to faint staining in two 10-month-old control pig retinas. In 22- and 24-month-old transgenic pigs in which all rods and many cones had died, staining was strong in cone axons and some cell bodies as well as IS indicating progression in oxidative damage between 10 and 22 months. Biomarkers for oxidative damage to proteins and DNA also showed progressive oxidative damage to those macromolecules in cones during the course of RP. These data support the hypothesis that the death of rods results in decreased oxygen consumption and hyperoxia in the outer retina resulting in gradual cone cell death from oxidative damage. This hypothesis has important therapeutic implications and deserves rapid evaluation. © 2005 Wiley-Liss, Inc. [source]


Regional variations in the outer retina of atherinomorpha (Beloniformes, Atheriniformes, Cyprinodontiformes: Teleostei): Photoreceptors, cone patterns, and cone densities

JOURNAL OF MORPHOLOGY, Issue 3 2003
Frank Reckel
Abstract The outer retinae of adults of 13 atherinomorph species, representing nine different families, were examined by both light and electron microscopy. The retinae were investigated with respect to photoreceptor types, cone densities, and cone patterns. All data were composed to eye maps. This procedure allows an interspecific comparison of the regional differences within the outer retina among these shallow-water fish. Furthermore, for a more detailed pattern analysis nitro-blue tetrazolium chloride- (NBT)-stainings in the retina of Melanotaenia maccullochi are presented. Apart from rods, eight morphologically different cone types could be identified: short, intermediate, and long single cones, double cones (equal and unequal), triple cones (triangular and linear), and in Ameca splendens one quadruple cone. Dimensions and occurrence of photoreceptors vary among the respective species and within the retinal regions. In the light-adapted state, the cones are arranged in highly ordered mosaics. Five different cone tessellation types were found: row patterns, twisted row patterns, square patterns, pentagonal patterns, and, exclusively in Belone belone, a hexagonal pattern. In Melanotaenia maccullochi the different spectral photoreceptor classes correspond well with the distribution of morphological photoreceptor classes within the mosaic. Double cone density maxima together with a highly ordered cone arrangement usually occur in the nasal and/or ventral to ventrotemporal retina. In most of the species that were examined these high-density regions are presumed to process visual stimuli from the assumed main directions of vision, which mainly depend on feeding behavior and predator pressure. Our findings are discussed with respect to the variable behavioral and visual ecology and phylogeny of the respective species. J. Morphol. 257:270,288, 2003. © 2003 Wiley-Liss, Inc. [source]


Differential distribution of voltage-gated potassium channels Kv 1.1,Kv1.6 in the rat retina during development

JOURNAL OF NEUROSCIENCE RESEARCH, Issue 1 2007
M. Höltje
Abstract The discharge behavior of neurons depends on a variable expression and sorting pattern of voltage-dependent potassium (Kv) channels that changes during development. The rodent retina represents a neuronal network whose main functions develop after birth. To obtain information about neuronal maturation we analyzed the expression of subunits of the Kv1 subfamily in the rat retina during postnatal development using immunocytochemistry and immunoelectron microscopy. At postnatal day 5 (P5) all the ,-subunits of Kv1.1,Kv1.6 channels were found to be expressed in the ganglion cell layer (GCL), most of them already at P1 or P3. Their expression upregulates postnatally and the pattern and distribution change in an isoform-specific manner. Additionally Kv1 channels are found in the outer and inner plexiform layer (OPL, IPL) and in the inner nuclear layer (INL) at different postnatal stages. In adult retina the Kv 1.3 channel localizes to the inner and outer segments of cones. In contrast, Kv1.4 is highly expressed in the outer retina at P8. In adult retina Kv1.4 occurs in rod inner segments (RIS) near the connecting cilium where it colocalizes with synapse associated protein SAP 97. By using confocal laser scanning microscopy we showed a differential localization of Kv1.1-1.6 to cholinergic amacrine and rod bipolar cells of the INL of the adult retina. © 2006 Wiley-Liss, Inc. [source]


4415: Biochemical methods and X-ray based imaging strategies to evaluate retinal glucose metabolism

ACTA OPHTHALMOLOGICA, Issue 2010
C POITRY-YAMATEArticle first published online: 23 SEP 2010
Purpose Evaluating the coordinated energy metabolism between neurons and glia in situ as a means to evaluate retinal glucose metabolism and function. Methods The imaging of metals conjugated to sugar substrates or metals linked to compounds that affect glycolysis were detected using synchrotron-based low and high energy x-ray fluorescence imaging. X-ray fluorescence maps with <1 micron resolution were placed in a morphological context using simultaneously acquired transmission images of the preparation. Spectrophotometric enzymatic microassays with high selectivity and sensitivity were performed to confirm the intracellular incorporation and metabolism of the delivered substances. Results In the dark-adapted rat retina, glucose transport and phosphorylation were specifically localized to the Müller glia in situ and an activated glycolysis was not measurable in neurons. Glial glucose metabolism was moreover coordinated with excitatory synaptic transmission in the mid to outer retina. Conclusion Given that oxygen metabolism predominates in neurons and that oxidative metabolism is fuelled by glucose metabolism, fuel transport obligatorily occurs from glia to neurons in intact healthy retina. Combining x-ray techniques with micron to submicron resolution and biochemical microassays with nM sensitivity offers: (1) a unique experimental strategy to evaluate retinal and cerebral energy metabolism and compartmentation at the cellular level in situ; and (2) is important to the interpretation of images using in vivo functional imaging techniques in the clinic. [source]


3122: Regulation of retinal tissue oxygenation

ACTA OPHTHALMOLOGICA, Issue 2010
CJ POURNARAS
Purpose To evaluate the changes in the retinal oxygen partial pressure (PO2) following physiological stimuli. Methods Evaluation of either the preretinal and intraretina partial pressure of oxygen (PO2) distribution, using oxygen sensitive microelectrodes, in various animal models. Measurements were obtained during changes of the perfusion pressure, systemic hyperoxia, hypoxia, hypercapnia, carbogen breathing and following carbonic anydrase inhibitors use. Results The oxygen tension (PO2) in the inner half of the retina remains largely unaffected by moderate changes in perfusion pressure. The increase of the systemic PaO2 through breathing of 100% O2 (hyperoxia) induces endothelin (ET) mediated marked vasoconstriction of the inner retinal arterioles in both anesthetized animals and normal human subjects. The regulatory vasoconstriction maintains the PO2 in retinal tissue constant. A decrease in PaO2 (hypoxia) induces a vasodilation of the retinal arterioles through endothelium-derived NO release. As a result, trans-retinal PO2 profiles made during steps of systemic hypoxia have shown that the values measured in the inner retina up to half of its thickness, remain rather stable. By contrast, the PO2 values, measured close to the choroid and in the outer retina, decrease in a linear manner with the decrease of the PaO2. An increase in the PaCO2 (hypercapnia) of arteriolar blood, produces an increase in retinal blood flow and retinal tissue PO2. Intravenous injection of acetazolamide (carbonic anhydrase inhibitor) produces an increase in preretinal PO2 due to dilation of the retinal vessels Conclusion Thanks to the autoregulatory capability of the retinal circulation, the oxygen tension (PO2) in the inner half of the retina, remains largely unaffected during physiological stimuli. [source]


The therapeutic effects of retinal laser treatment and vitrectomy.

ACTA OPHTHALMOLOGICA, Issue 5 2001
A theory based on oxygen, vascular physiology
ABSTRACT. The physiologic mechanism of photocoagulation can been seen in the following steps. The physical light energy is absorbed in the melanin of the retinal pigment epithelium. The adjacent photoreceptors are destroyed and are replaced by a glial scar and the oxygen consumption of the outer retina is reduced. Oxygen that normally diffuses from the choriocapillaris into the retina can now diffuse through the laser scars in the photoreceptor layer without being consumed in the mitochondria of the photoreceptors. This oxygen flux reaches the inner retina to relieve inner retinal hypoxia and raise the oxygen tension. As a result, the retinal arteries constrict and the bloodflow decreases. Hypoxia relief reduces production of growth factors such as VEGF and neovascularization is reduced or stopped. Vasoconstriction increases arteriolar resistance, decreases hydrostatic pressure in capillaries and venules and reduces edema formation according to Starling's law. Vitrectomy also improves retinal oxygenation by allowing oxygen and other nutrients to be transported in water currents in the vitreous cavity from well oxygenated to ischemic areas of the retina. Vitrectomy and retinal photocoagulation both improve retinal oxygenation and both reduce diabetic macular edema and retinal neovascularization. [source]