Other Sterols (other + sterol)

Distribution by Scientific Domains


Selected Abstracts


Sterol-induced upregulation of phosphatidylcholine synthesis in cultured fibroblasts is affected by the double-bond position in the sterol tetracyclic ring structure

FEBS JOURNAL, Issue 21 2000
Petra Leppimäki
We have examined how a specific enrichment of cultured fibroblasts with various sterols (cholesterol, lathosterol, 7-dehydrocholesterol, allocholesterol and dihydrocholesterol) regulate synthesis de novo of phosphatidylcholine, cholesterol and cholesteryl (or steryl) esters in human skin fibroblasts. When human skin fibroblasts were incubated for 1 h with 130 µm cholesterol/CyD complexes, the mass of cellular free cholesterol increased by 100 nmol·mg,1 protein (from 90 nmol·mg,1 to 190 nmol·mg,1 protein). A similar exposure of cells to different sterol/CyD complexes increased the cell sterol content between 38 and 181 nmol sterol per mg cell protein. In cholesterol-enriched cells, the rate of phosphatidylcholine synthesis was doubled compared to control cells, irrespective of the type of precursor used ([3H]choline, [3H]palmitic acid, or [14C]glycerol). Enrichment of fibroblasts with 7-dehydrocholesterol, allocholesterol, or dihydrocholesterol also upregulated phosphatidylcholine synthesis, whereas cells enriched with lathosterol failed to upregulate their phosphatidylcholine synthesis. The activity of membrane-bound CTP:phosphocholine cytidylyltransferase, the rate-limiting enzyme, was increased by 47 ± 4% in cholesterol-enriched cells whereas its activity was unchanged in lathosterol-enriched cells. Sterol enrichment with all tested sterols (including lathosterol) down-regulated acetate-incorporation into cholesterol, and upregulated sterol esterification in the sterol-enriched fibroblasts. Using 31P-NMR to measure the lamellar-to-hexagonal (L,,HII) phase transition in multilamellar lipid dispersions, lathosterol-containing membranes underwent their transition at significantly higher temperatures compared to membranes containing any of the other sterols. In a system with 1-palmitoyl-2-oleoyl- sn -glycero-3-phosphoethanolamine and either cholesterol or lathosterol (70 : 30 mol/mol), differential scanning calorimetry also revealed that the L,,HII -transition occurred at a higher temperature with lathosterol compared to either cholesterol, allocholesterol, or dihydrocholesterol. These findings together suggest that there may exist a correlation between the propensity of a sterol to stabilize the L,,HII -transition and its capacity to upregulate the activity of CTP:phosphocholine cytidylyltransferase in cells. [source]


A molecular mechanics force field for biologically important sterols

JOURNAL OF COMPUTATIONAL CHEMISTRY, Issue 13 2005
Zoe Cournia
Abstract A parameterization has been performed of the biologically important sterols cholesterol, ergosterol, and lanosterol for the CHARMM27 all-atom molecular mechanics force field. An automated parameterization method was used that involves fitting the potential to vibrational frequencies and eigenvectors derived from quantum-chemical calculations. The partial charges were derived by fitting point charges to quantum-chemically calculated electrostatic potentials. To model the dynamics of the hydroxyl groups of the sterols correctly, the parameter set was refined to reproduce the energy barrier for the rotation of the hydroxyl group around the carbon connected to the hydroxyl of each sterol. The frequency-matching plots show good agreement between the CHARMM and quantum chemical normal modes. The parameters are tested in a molecular dynamics simulation of the cholesterol crystal structure. The experimental geometry and cell dimensions are well reproduced. The force field derived here is also useful for simulating other sterols such as the phytosterols sigmasterol, and campesterol, and a variety of steroids. © 2005 Wiley Periodicals, Inc. J Comput Chem 26: 1383,1399, 2005 [source]


Real-time monitoring of the membrane-binding and insertion properties of the cholesterol-dependent cytolysin anthrolysin O from Bacillus anthracis,

JOURNAL OF MOLECULAR RECOGNITION, Issue 4 2006
Simon Cocklin
Abstract Bacillus anthracis has recently been shown to secrete a potently hemolytic/cytolytic protein that has been designated anthrolysin O (ALO). In this work, we initiated a study of this potential anthrax virulence factor in an effort to understand the membrane,binding properties of this protein. Recombinant anthrolysin O (rALO35,512) and two N-terminally truncated versions of ALO (rALO390,512 and rALO403,512) from B. anthracis were overproduced in Escherichia coli and purified to homogeneity. The role of cholesterol in the cytolytic activity of ALO was probed in cellular cholesterol depletion assays using mouse and human macrophage-like lines, and also Drosophila Schneider 2 cells. Challenging the macrophage cells with rALO35,512, but not rALO390,512 or rALO403,512, resulted in cell death by lysis, with this cytolysis being abolished by depletion of the membrane cholesterol. Drosophila cells, which contain ergosterol as their major membrane sterol, were resistant to rALO-mediated cytolysis. In order to determine the molecular mechanism of this resistance, the interaction of rALO with model membranes comprised of POPC alone, or with a variety of structurally similar sterols including ergosterol, was probed using Biacore. Both rALO35,512 and rALO403,512 demonstrated robust binding to model membranes composed of POPC and cholesterol, with amount of protein bound proportional to the cholesterol content. Ergosterol supported greatly reduced binding of both rALO35,512 and rALO403,512, whereas other sterols tested did not support binding. The rALO403,512,membrane interaction demonstrated an equilibrium dissociation constant (KD) in the low nanomolar range, whereas rALO35,512 exhibited complex kinetics likely due to the multiple events involved in pore formation. These results establish the pivotal role of cholesterol in the action of rALO. The biosensor method developed to measure ALO recognition of cholesterol in a membrane environment could be extended to provide a platform for the screening of inhibitors of other membrane-binding proteins and peptides. Copyright© 2006 John Wiley & Sons, Ltd. [source]


24S-hydroxycholesterol in relation to disease manifestations of acute experimental autoimmune encephalomyelitis

JOURNAL OF NEUROSCIENCE RESEARCH, Issue 7 2007
C.E. Teunissen
Abstract Levels of the brain-specific cholesterol metabolite 24S-hydroxycholesterol are proposed as possible biomarkers for multiple sclerosis (MS). It is not yet clear for which aspect of the MS disease manifestations 24S-hydroxycholesterol is a reflection. We studied the relation of serum levels of 24S-hydroxycholesterol and other sterols to the disease characteristics of acute experimental autoimmune encephalomyelitis (EAE), an animal model for MS. Serum was analyzed for cholesterol precursors, oxysterols, and plant sterols during the course of disease development. Significantly increased levels of the cholesterol metabolites 24S-hydroxycholesterol and 27-hydroxycholesterol were observed on day 9, before the onset of clinical signs. The serum levels of these oxysterols gradually increased up to 193% and 415%, respectively, at day 17, when clinical symptoms had recovered. Total cholesterol levels were slightly but significantly decreased on day 9 and day 17 in treated animals. Serum levels of cholesterol precursors and plant sterols decreased gradually from day 11 and day 14, respectively. Immunostaining of the 24S-hydroxycholesterol-forming enzyme Cyp46 was shown in macrophage infiltrates. In vitro experiments confirmed the presence of Cyp46 in macrophages and showed a decreased expression after LPS treatment. The data indicate that changes in serum oxysterols occur early in EAE and can be formed by macrophages. These early changes indicate an important role for oxysterols in the development of EAE. © 2007 Wiley-Liss, Inc. [source]