Other Pathways (other + pathway)

Distribution by Scientific Domains
Distribution within Medical Sciences

Selected Abstracts

Biosynthesis of cellulose-enriched tension wood in Populus: global analysis of transcripts and metabolites identifies biochemical and developmental regulators in secondary wall biosynthesis

Sara Andersson-Gunnerås
Summary Stems and branches of angiosperm trees form tension wood (TW) when exposed to a gravitational stimulus. One of the main characteristics of TW, which distinguishes it from normal wood, is the formation of fibers with a thick inner gelatinous cell wall layer mainly composed of crystalline cellulose. Hence TW is enriched in cellulose, and deficient in lignin and hemicelluloses. An expressed sequence tag library made from TW-forming tissues in Populus tremula (L.) × tremuloides (Michx.) and data from transcript profiling using microarray and metabolite analysis were obtained during TW formation in Populus tremula (L.) in two growing seasons. The data were examined with the aim of identifying the genes responsible for the change in carbon (C) flow into various cell wall components, and the mechanisms important for the formation of the gelatinous cell wall layer (G-layer). A specific effort was made to identify carbohydrate-active enzymes with a putative function in cell wall biosynthesis. An increased C flux to cellulose was suggested by a higher abundance of sucrose synthase transcripts. However, genes related to the cellulose biosynthetic machinery were not generally affected, although the expression of secondary wall-specific CesA genes was modified in both directions. Other pathways for which the data suggested increased activity included lipid and glucosamine biosynthesis and the pectin degradation machinery. In addition, transcripts encoding fasciclin-like arabinogalactan proteins were particularly increased and found to lack true Arabidopsis orthologs. Major pathways for which the transcriptome and metabolome analysis suggested decreased activity were the pathway for C flux through guanosine 5,-diphosphate (GDP) sugars to mannans, the pentose phosphate pathway, lignin biosynthesis, and biosynthesis of cell wall matrix carbohydrates. Several differentially expressed auxin- and ethylene-related genes and transcription factors were also identified. [source]

Rapamycin inhibits lung metastasis of B16 melanoma cells through down-regulating alphav integrin expression and up-regulating apoptosis signaling

CANCER SCIENCE, Issue 2 2010
Zhuoshun Yang
Currently available data indicate the potential application of rapamycin and its analogues in the clinic as anticancer therapeutic agents through inhibiting tumor cell growth and tumor angiogenesis. However, whether rapamycin can directly suppress tumor metastasis remains unclear. In the present study, we demonstrated that rapamycin treatment results in reduced formation of metastatic nodules in the lung by B16 cells. This is due to two mechanisms. First, the expression of ,v integrin is down-regulated by rapamycin treatment, and subsequently, the phosphorylation of focal adhesion kinase (FAK) is reduced. Second, rapamycin promotes apoptosis by up-regulating the proapoptotic molecules Bid and Bax and down-regulating Bcl-xL. Blocking the apoptosis pathway by pan-caspase inhibitor zVAD partially reversed the suppression of rapamycin in B16 metastasis. Interestingly, rapamycin up-regulates Bax and Bid in B16 cells via the S6K1 pathway and down-regulates the expression of ,v integrin via other pathway(s). In addition, our data showed that autophagy was not involved in the mechanisms of rapamycin-mediated metastasis suppression. Our findings demonstrate a potential anti-metastatic effect of rapamycin via down-regulating ,v integrin expression and up-regulating apoptosis signaling, suggesting that rapamycin might be worthy of clinical evaluation as an antimetastatic agent. (Cancer Sci 2009) [source]

GDNF and insulin cooperate to enhance the proliferation and differentiation of enteric crest-derived cells

Paul J. Focke
Abstract Previously we have shown that glial derived neurotrophic factor (GDNF) stimulates modest increases in the proliferation of avian enteric crest-derived cells and similar increases in the phosphorylation of the phosphoinositide 3,kinase (PI3K) downstream substrate Akt (Akt-P). In the present study we tested whether GDNF-independent increases in PI3K activation would be sufficient to support proliferation. We found that insulin induces a large increase in the phosphorylation of Akt and can initiate DNA synthesis in avian enteric crest-derived cells, but is unable to maintain proliferation over time in culture, measured by BrdU incorporation. GDNF can also initiate DNA synthesis, but it too is unable to maintain BrdU incorporation in cultured enteric crest-derived cells. Sustained incorporation of BrdU after 16,48 h in culture is shown to be dependent on a combination of GDNF and insulin. Using a phospho-specific antibody, we found Akt-P levels to be similar in the proliferating (BrdU incorporation maintained from 16,48 h in culture) and nonproliferating populations, suggesting that Akt-P levels were not solely controlling the extent of BrdU incorporation. A minimum level of PI3K activation, however, is required, as shown by the dose-dependent reduction in proliferation with the PI3K inhibitor LY-294002. We conclude that the integrity of the PI3K pathway is essential for enteric crest-derived cell proliferation, but that the absolute levels of Akt-P do not determine the extent of proliferation. The enhanced proliferation in cultures containing both GDNF and insulin suggests that other pathways are involved, including the possibility that PI3K downstream effectors other than Akt are important in the regulation of avian enteric crest-derived cell proliferation. © 2003 Wiley Periodicals, Inc. J Neurobiol 55: 151,164, 2003 [source]

Tolerance to low O2: lessons from invertebrate genetic models

Gabriel G. Haddad
There have been extensive studies and experiments on cells, tissues and animals that are susceptible to low O2, and many pathways have been discovered that can lead to injury in mammalian tissues. But other pathways that can help in the survival of low O2 have also been discovered in these same tissues. It should be noted, however, that the mechanisms that can lead to better survival in susceptible mammalian tissues have quantitatively a ,narrow range' for recovery, since these tissues are inherently at risk. Another strategy for understanding the susceptibility of organisms is to learn about pathways used by anoxia-resistant animals. Approximately a decade ago, I and my co-workers discovered that one such animal, Drosophila melanogaster, is very tolerant of low O2. Here, I detail some of the studies that we performed and the strategies that we developed to understand the mechanisms that underlie the fascinating resistance of Drosophila to measured partial pressure of O2 of zero. We employed three ideas to try to address our questions: (1) mutagenesis screens to identify loss-of-function mutants; (2) microarrays on adapted versus naïve flies; and (3) studying cell biology and physiology of genes that seem important in flies and mammals. The hope is to learn from these studies about the fundamental basis of tolerance to the lack of O2, and with this knowledge be able to develop better therapies for the future. [source]

7-Ketocholesterol-induced apoptosis

FEBS JOURNAL, Issue 12 2005
Involvement of several pro-apoptotic but also anti-apoptotic calcium-dependent transduction pathways
Oxysterols, and particularly 7-ketocholesterol, appear to be strongly involved in the physiopathology of atherosclerosis. These molecules are suspected to be cytotoxic to the cells of the vascular wall and monocytes/macrophages, particularly by inducing apoptosis. Previous studies have demonstrated that 7-ketocholesterol-induced apoptosis is triggered by a sustained increase of cytosolic-free Ca2+, which elicits the mitochondrial pathway of apoptosis by activation of the calcium-dependent phosphatase calcineurin, leading to dephosphorylation of the ,BH3 only' protein BAD. However, thorough study of the results suggests that other pathways are implicated in 7-ketocholesterol-induced cytotoxicity. In this study, we demonstrate the involvement of two other calcium-dependent pathways during 7-ketocholesterol-induced apoptosis. The activation of the MEK,ERK pathway by the calcium-dependent tyrosine kinase PYK 2, a survival pathway which delays apoptosis as shown by the use of the MEK inhibitor U0126, and a pathway involving another pro-apoptotic BH3 only protein, Bim. Indeed, 7-ketocholesterol treatment of human monocytic THP-1 cells induces the release of Bim-LC8 from the microtubule-associated dynein motor complex, and its association with Bcl-2. Therefore, it appears that 7-ketocholesterol-induced apoptosis is a complex phenomenon resulting from calcium-dependent activation of several pro-apoptotic pathways and also one survival pathway. [source]

Evidence for a single-step mechanism in the origin of hyperdiploid childhood acute lymphoblastic leukemia

Kajsa Paulsson
High hyperdiploidy (>50 chromosomes) in childhood acute lymphoblastic leukemia (ALL) is characterized by nonrandom multiple trisomies and tetrasomies involving in particular chromosomes X, 4, 6, 8, 10, 14, 17, 18, and 21. This characteristic karyotypic pattern, the most common in pediatric ALL, may arise via a tetraploid state with subsequent loss of chromosomes, by sequential gains of chromosomes in consecutive cell divisions, or by simultaneous gain of chromosomes in a single mitosis. These alternatives may be distinguished by investigation of the allelic ratios of loci on the tetrasomic and disomic chromosomes. Previous studies of tetrasomy 21 and of the occurrence of uniparental disomies (UPDs) have suggested that the most likely mechanism is simultaneous gain. However, the other pathways have not been definitely excluded because complete analyses of all disomies and tetrasomies have never been performed. In the present study, we investigated 27 hyperdiploid ALLs by using 58 polymorphic microsatellite markers mapped to 23 of the 24 human chromosomes. Twenty-six tetrasomies were analyzed (involving chromosomes X, 8, 10, 14, 18, and 21), and the frequency of UPDs was determined in 10 cases. In total, 200 chromosomes were studied. Equal allele dosage was observed in 24 of 26 tetrasomies, and only 7 UPDs were found. These data strongly suggest that hyperdiploidy in childhood ALL generally arises by a simultaneous gain of all additional chromosomes in a single abnormal mitosis. © 2005 Wiley-Liss, Inc. [source]

Suppression of liver regeneration and hepatocyte proliferation in hepatocyte-targeted glypican 3 transgenic mice,

HEPATOLOGY, Issue 3 2010
Bowen Liu
Glypican 3 (GPC3) belongs to a family of glycosylphosphatidylinositol-anchored, cell-surface heparan sulfate proteoglycans. GPC3 is overexpressed in hepatocellular carcinoma. Loss-of-function mutations of GPC3 result in Simpson-Golabi-Behmel syndrome, an X-linked disorder characterized by overgrowth of multiple organs, including the liver. Our previous study showed that GPC3 plays a negative regulatory role in hepatocyte proliferation, and this effect may involve CD81, a cell membrane tetraspanin. To further investigate GPC3 in vivo, we engineered transgenic (TG) mice overexpressing GPC3 in the liver under the control of the albumin promoter. GPC3 TG mice with hepatocyte-targeted, overexpressed GPC3 developed normally in comparison with their nontransgenic littermates but had a suppressed rate of hepatocyte proliferation and liver regeneration after partial hepatectomy. Moreover, gene array analysis revealed a series of changes in the gene expression profiles in TG mice (both in normal mice and during liver regeneration). In unoperated GPC3 TG mice, there was overexpression of runt related transcription factor 3 (7.6-fold), CCAAT/enhancer binding protein alpha (2.5-fold), GABA A receptor (2.9-fold), and wingless-related MMTV integration site 7B (2.8-fold). There was down-regulation of insulin-like growth factor binding protein 1 (8.4-fold), Rab2 (5.6-fold), beta-catenin (1.7-fold), transforming growth factor beta type I (3.1-fold), nodal (1.8-fold), and yes-associated protein (1.4-fold). Changes after hepatectomy included decreased expression in several cell cycle,related genes. Conclusion: Our results indicate that in GPC3 TG mice, hepatocyte overexpression of GPC3 suppresses hepatocyte proliferation and liver regeneration and alters gene expression profiles, and potential cell cycle,related proteins and multiple other pathways are involved and affected. (HEPATOLOGY 2010;52:1060,1067) [source]

Role of Shc in T-cell development and function

Li Zhang
Summary: Shc is a prototype adapter protein that is expressed from the earliest stages of T-cell development. Shc becomes rapidly tyrosine phosphorylated after T-cell receptor (TCR) engagement. Expression of dominant negative forms of Shc in T-cell lines had also suggested a role for this adapter downstream of the TCR. However, until recently, the relative significance of Shc compared to several other adapters in T cells was unclear. Mice lacking Shc expression specifically in the T-cell lineage together with inducible expression of dominant negative Shc in transgenic mice have revealed an essential and nonredundant role for Shc in thymic T-cell development. Functional defects in a Jurkat T-cell line lacking Shc expression also suggest a role for Shc in mature T-cell functions. While the requirement of Shc in T-cell signaling is now established, precisely what signaling pathways downstream of Shc make this adapter unique are less clear. Although the Shc-mediated activation of the extracellular signal regulated kinase (Erk)/mitogen-activated protein kinase (MAPK) pathway could be one component, Shc likely signals to other pathways in T cells that are not yet discovered. A better molecular understanding of Shc function in the future could provide insights into how multiple adapters coordinate the various outcomes downstream of the TCR. [source]

Somatic mutations of adenomatous polyposis coli gene and nuclear b-catenin accumulation have prognostic significance in invasive urothelial carcinomas: Evidence for Wnt pathway implication

Efstathios Kastritis
Abstract Wnt pathway signaling is crucial in many cancers and data indicate crosstalk with other key cancer pathways, however in urothelial carcinogenesis it has not been extensively studied. We searched for mutations in adenomatous polyposis coli (APC), a key regulator of the pathway, and studied b-catenin expression and interactions with the expression of other markers of apoptosis, angiogenesis, and proliferation in patients with invasive urothelial cancer. The mutation cluster region of APC was directly sequenced in 70 patients with muscle invasive disease who were treated with surgery and adjuvant chemotherapy. COX-2, p53, Ki67, and b-catenin were studied immunohistochemically and micro vessel density was quantified by CD105 expression. Single somatic amino-acid substitutions (missense) were found in 9 (13%) and frameshift deletions in 2 (3%) tumors, all located in regions adjacent to b-catenin binding sites. Patients having either APC missense mutations or b-catenin nuclear accumulation had less frequent COX-2 overexpression (24% vs. 76%, p = 0.043) and more frequent lymph node involvement (75% vs. 38%, p = 0.023). Patients with either APC mutations or b-catenin accumulation had shorter disease-free interval (13.4 vs. 28 months, p = 0.07), whereas in multivariate analysis they had shorter disease-specific survival (60.5 vs. 20.6 months, p = 0.048). Somatic APC missense mutations are not rare in advanced urothelial neoplasms. Either APC mutations and/or aberrant expression of b-catenin are associated with worse outcome. Further study of the role of the Wnt pathway, potential crosstalk with other pathways and potential candidate therapeutic targets in urothelial cancer is needed. © 2008 Wiley-Liss, Inc. [source]

Seventh Day Syndrome , acute hepatocyte apoptosis associated with a unique syndrome of graft loss following liver transplantation,

Muhammed Ashraf Memon
Abstract:Aim: The aim of this study is to describe a unique 7th day syndrome (7DS), quite different from other causes of post-transplantation allograft dysfunction in a group of orthotopic liver transplant (OLT) patients who needed retransplantation. Methods: A retrospective analysis of 594 consecutive OLT over an 8-year period revealed that 10 patients developed allograft dysfunction approximately 7 days following an initially normal graft function. Results: The features included: (a) severe liver failure; (b) sudden peak of extremely high liver enzymes at approximately day 7; (c) serial liver biopsy findings of central lobular hemorrhage with minimal inflammatory cell infiltrate and (d) an explant with no evidence of vascular thrombosis. The biochemical and morphometric pathological data of these patients were compared with data of patitents who had early acute rejection (AR), hepatic artery thrombosis (HAT), primary non-function (PNF), severe sepsis and no dysfunction. Lastly, serial liver core biopsies and explants were tested for evidence of apoptosis, which revealed a significantly higher number of apoptotic hepatocytes in 7DS compared to all control groups. Conclusions: Seventh Day Syndrome is a distinct entity associated with early graft dysfunction characterized by a marked apoptosis of hepatocytes. Fas receptor activation or other pathways of program cell death may be implicated in occurrence of 7DS. [source]

1141636674 Differential serine and tyrosine phosphorylation of Signal Transducer and Activator of Transcription 3 (STAT3) in Jeg-3 choriocarcinoma cell lines

J Roediger
Background:, Signal Transducer and Activator of Transcription 3 (STAT3) is an intracellular signalling molecule, which is used by several cytokines, including leukemia inhibitory factor (LIF), epithelial growth factor (EGF), and interleukin-6 (IL-6). It induces a variety of gene transcripts and cell functions. In trophoblast cells and in tumor cells, its tyrosine phosphorylation is directly linked to their invasiveness. The regulation and function of STAT3 serine phosphorylation is still widely unclear. Material and Methods:, Jeg-3 choriocarcinoma cells were stimulated with different concentrations of EGF, IL-6 and LIF. STAT3 serine (727) and tyrosine (705) phosphorylation were analyzed 5,60 min after stimulation by SDS-PAGE electrophoresis followed by Western blotting. Results:, Jeg-3 cells display spontaneous STAT3 serine phosphorylation. 100 ng/mL EGF induces a time-dependent reduction starting 15 min after stimulation. Tyrosine phosphorylation does not occur spontaneously, but is strongly induced by EGF at all analyzed time points. LIF induces tyrosine phosphorylation, but affects serine phosphorylation only very slightly. IL-6 did not influence neither serine phosphorylation nor tyrosine phosphorylation. Discussion:, The EGF induced STAT3 tyrosine phosphorylation may be responsible for its invasion triggering capacities. The parallel reduction of serine phosphorylation may enhance this effect. LIF was formerly shown to enhance trophoblast invasion via STAT3 tyrosine phosphorylation. IL-6 displays very little effects on STAT3 and seems to use other pathways for signalling. [source]

Identification of novel heat shock factor-dependent genes and biochemical pathways in Arabidopsis thaliana

Wolfgang Busch
Summary In order to assess specific functional roles of plant heat shock transcription factors (HSF) we conducted a transcriptome analysis of Arabidopsis thaliana hsfA1a/hsfA1b double knock out mutants and wild-type plants. We used Affymetrix ATH1 microarrays (representing more than 24 000 genes) and conducted hybridizations for heat-treated or non-heat-treated leaf material of the respective lines. Heat stress had a severe impact on the transcriptome of mutant and wild-type plants. Approximately 11% of all monitored genes of the wild type showed a significant effect upon heat stress treatment. The difference in heat stress-induced gene expression between mutant and wild type revealed a number of HsfA1a/1b-regulated genes. Besides several heat shock protein and other stress-related genes, we found HSFA-1a/1b-regulated genes for other functions including protein biosynthesis and processing, signalling, metabolism and transport. By screening the profiling data for genes in biochemical pathways in which known HSF targets were involved, we discovered that at each step in the pathway leading to osmolytes, the expression of genes is regulated by heat stress and in several cases by HSF. Our results document that in the immediate early phase of the heat shock response HSF-dependent gene expression is not limited to known stress genes, which are involved in protection from proteotoxic effects. HsfA1a and HsfA1b-regulated gene expression also affects other pathways and mechanisms dealing with a broader range of physiological adaptations to stress. [source]

Overexpression of hepatocyte nuclear factor-3, induces apoptosis through the upregulation and accumulation of cytoplasmic p53 in prostate cancer cells,

THE PROSTATE, Issue 4 2010
Hyun Joo Lee
Abstract BACKGROUND Hepatocyte nuclear factor-3, (HNF-3,) has been known to act as a repressor in the pathogenesis of many cancers. Herein, we investigated the effect of HNF-3, overexpression in prostate cancer cells. METHODS HNF-3, was overexpressed in prostate cancer cells using an adenovirus recombinant expressing wild-type HNF-3,. The apoptosis of prostate cancer cells was determined by TUNEL, FACS, and caspase activity analyses. RESULTS Adenovirus-mediated overexpression of HNF-3, caused cell death in prostate cancer cells as assessed by changes in cellular and nuclear morphology, TUNEL analysis, and caspase activations. Furthermore, FACS analysis showed an increased sub-G1 phase of cell cycle as well as the G2/M phase with a corresponding decrease in S phases. HNF-3, overexpression caused the upregulation of p53 protein and its accumulation, together with HNF-3,, in the cytoplasm. It also causes Bax protein to localize to the mitochondria-enriched fraction. These findings suggest that multiple apoptotic pathways seem to be involved in the HNF-3,-induced cell death: pathways involving the accumulation of p53 protein in the cytoplasm and subsequent cytochrome c release, and other pathways involving death receptor signaling and caspase-8 activation. CONCLUSIONS The results of the current study suggest a novel function of HNF-3, as a killer of malignant prostate cancer cells, which reveals HNF-3, as a promising therapeutic molecule for prostate cancers. Prostate 70: 353,361, 2010. © 2009 Wiley-Liss, Inc. [source]

Selective functional inhibition of JAK-3 is sufficient for efficacy in collagen-induced arthritis in mice

Tsung H. Lin
Objective All ,-chain cytokines signal through JAK-3 and JAK-1 acting in tandem. We undertook this study to determine whether the JAK-3 selective inhibitor WYE-151650 would be sufficient to disrupt cytokine signaling and to ameliorate autoimmune disease pathology without inhibiting other pathways mediated by JAK-1, JAK-2, and Tyk-2. Methods JAK-3 kinase selective compounds were characterized by kinase assay and JAK-3,dependent (interleukin-2 [IL-2]) and ,independent (IL-6, granulocyte,macrophage colony-stimulating factor [GM-CSF]) cell-based assays measuring proliferation or STAT phosphorylation. In vivo, off-target signaling was measured by IL-22, and erythropoietin (EPO),mediated models, while on-target signaling was measured by IL-2,mediated signaling. Efficacy of JAK-3 inhibitors was determined using delayed-type hypersensitivity (DTH) and collagen-induced arthritis (CIA) models in mice. Results In vitro, WYE-151650 potently suppressed IL-2,induced STAT-5 phosphorylation and cell proliferation, while exhibiting 10,29-fold less activity against JAK-3,independent IL-6, or GM-CSF,induced STAT phosphorylation. Ex vivo, WYE-151650 suppressed IL-2,induced STAT phosphorylation, but not IL-6,induced STAT phosphorylation, as measured in whole blood. In vivo, WYE-151650 inhibited JAK-3,mediated IL-2,induced interferon-, production and decreased the natural killer cell population in mice, while not affecting IL-22,induced serum amyloid A production or EPO-induced reticulocytosis. WYE-151650 was efficacious in mouse DTH and CIA models. Conclusion In vitro, ex vivo, and in vivo assays demonstrate that WYE-151650 is efficacious in mouse CIA despite JAK-3 selectivity. These data question the need to broadly inhibit JAK-1,, JAK-2,, or Tyk-2,dependent cytokine pathways for efficacy. [source]

Mitochondrial biogenesis: Which part of "NO" do we understand?

BIOESSAYS, Issue 6 2003
Scot C. Leary
A recent paper by Nisoli et al.1 provides the first evidence that elevated levels of nitric oxide (NO) stimulate mitochondrial biogenesis in a number of cell lines via a soluble guanylate-cyclase-dependent signaling pathway that activates PGC1, (peroxisome proliferator-activated receptor , coactivator-1,), a master regulator of mitochondrial content. These results raise intriguing possibilities for a role of NO in modulating mitochondrial content in response to physiological stimuli such as exercise or cold exposure. However, whether this signaling cascade represents a widespread mechanism by which mammalian tissues regulate mitochondrial content, and how it might integrate with other pathways that control PGC1, expression, remain unclear. BioEssays 25:538,541, 2003. © 2003 Wiley Periodicals, Inc. [source]

Notching up another pathway

BIOESSAYS, Issue 5 2002
Keith Brennan
The Notch proteins play a vital role in cell fate decisions in both invertebrate and vertebrate development. Careful analysis of this role has led to a model of signalling downstream of these receptors, via the CSL (CBF1, Suppressor of Hairless, Lag-1) family of transcription factors. There have been suggestions, however, that Notch can signal through other pathways. In the current paper, Ramain et al.1 provide compelling evidence for Notch signalling through a CSL-independent pathway and they demonstrate that the cytoplasmic protein, Deltex, is required for this signal. In addition, they show that Wnt signalling may regulate this Deltex-dependent signal. BioEssays 24:405,410, 2002. © 2002 Wiley Periodicals, Inc. [source]

Kinetic characterization of vero cell metabolism in a serum-free batch culture process

Emma Petiot
Abstract A global kinetic study of the central metabolism of Vero cells cultivated in a serum-free medium is proposed in the present work. Central metabolism including glycolysis, glutaminolysis, and tricarboxylic acid cycle (TCA) was demonstrated to be saturated by high flow rates of consumption of the two major substrates, glucose, and glutamine. Saturation was reavealed by an accumulation of metabolic intermediates and amino acids, by a high production of lactate needed to balance the redox pathway, and by a low participation of the carbon flow to the TCA cycle supply. Different culture conditions were set up to reduce the central metabolism saturation and to better balance the metabolic flow rates between lactate production and energetic pathways. From these culture conditions, substitutions of glutamine by other carbon sources, which have lower transport rates such as asparagine, or pyruvate in order to shunt the glycolysis pathway, were successful to better balance the central metabolism. As a result, an increase of the cell growth with a concomitant decrease of cell death and a better distribution of the carbon flow between TCA cycle and lactate production occurred. We also demonstrated that glutamine was a major carbon source to supply the TCA cycle in Vero cells and that a reduction of lactate production did not necessary improve the efficiency of the Vero cell metabolism. Thus, to adapt the formulation of the medium to the Vero cell needs, it is important to provide carbon substrates inducing a regulated supply of carbon in the TCA cycle either through the glycolysis or through other pathways such as glutaminolysis. Finally, this study allowed to better understand the Vero cell behavior in serum-free medium which is a valuable help for the implementation of this cell line in serum-free industrial production processes. Biotechnol. Bioeng. 2010;107: 143,153. © 2010 Wiley Periodicals, Inc. [source]

Insights into the Central Metabolism of Spodoptera frugiperda (Sf-9) and Trichoplusia ni BTI-Tn-5B1-4(Tn -5) Insect Cells by Radiolabeling Studies

Chouki Benslimane
The insect cell baculovirus expression vector system (BEVS) is one of the most commonly used expression systems for recombinant protein production. This system is also widely used for the production of recombinant virus and virus-like particles. Although several published reports exist on recombinant protein expression using insect cells, information dealing with their metabolism in vitro is relatively scarce. In this work we have analyzed the metabolism of glucose and glutamine, the main carbon and/or energy compounds, of the two most commonly used insect cell lines, Spodoptera frugiperda (Sf-9) and the Trichoplusia niBTI-Tn-5B1 - 4 (Tn-5). Radiolabeled substrates have been used to determine the flux of glucose carbon entering the tricarboxylic acid cycle (TCA) and the pentose phosphate (PP) pathway by direct measurement of 14CO2 produced. The percentage of total glucose metabolized to CO2 via the TCA cycle was higher in the case of the Sf-9 (2.7%) compared to Tn-5 (0.6%) cells, while the percentage of glucose that is metabolized via the PP pathway was comparable at 14% and 16% for the two cell lines, respectively. For both cell lines, the remaining 83% of glucose is metabolized through other pathways generating, for example, lactate, alanine, etc. The percentage of glutamine oxidized in the TCA cycle was approximately 5-fold higher in the case of the Tn-5 (26.1%) as compared to the Sf-9 cells (4.6%). Furthermore, the changes in the metabolic fluxes of glucose and glutamine in Tn-5-PYC cells, which have been engineered to express a cytosolic pyruvate carboxylase, have been studied and compared to the unmodified cells Tn-5. As a result of this metabolic engineering, significant increase in the percentage of glucose oxidized in the TCA cycle (3.2%) as well as in the flux through the PP pathway (34%) of the Tn-5-PYC were observed. [source]

Cell Death Mechanisms Following Traumatic Brain Injury

Ramesh Raghupathi PhD
Neuronal and glial cell death and traumatic axonal injury contribute to the overall pathology of traumatic brain injury (TBI) in both humans and animals. In both head-injured humans and following experimental brain injury, dying neural cells exhibit either an apoptotic or a necrotic morphology. Apoptotic and necrotic neurons have been identified within contusions in the acute post-traumatic period, and in regions remote from the site of impact in the days and weeks after trauma, while degenerating oligodendrocytes and astrocytes have been observed within injured white matter tracts. We review and compare the regional and temporal patterns of apoptotic and necrotic cell death following TBI and the possible mechanisms underlying trauma-induced cell death. While excitatory amino acids, increases in intracellular calcium and free radicals can all cause cells to undergo apoptosis, in vitro studies have determined that neural cells can undergo apoptosis via many other pathways. It is generally accepted that a shift in the balance between pro- and anti-apoptotic protein factors towards the expression of proteins that promote death may be one mechanism underlying apoptotic cell death. The effect of TBI on cellular expression of survival promoting-proteins such as Bcl-2, Bcl-xL, and extracellular signal-regulated kinases, and death-inducing proteins such as Bax, c-Jun N-terminal kinase, tumor-suppressor gene, p53, and the calpain and caspase families of proteases are reviewed. In light of pharmacologic strategies that have been devised to reduce the extent of apoptotic cell death in animal models of TBI, our review also considers whether apoptosis may serve a protective role in the injured brain. Together, these observations suggest that cell death mechanisms may be representative of a continuum between apoptotic and necrotic pathways. [source]

Toluene diisocyanate enhances human bronchial epithelial cells' permeability partly through the vascular endothelial growth factor pathway

H. Zhao
Summary Background Toluene diisocyanate (TDI) is a recognized chemical asthmogen; yet, the mechanisms of its toxicity have not been elucidated. Objective To investigate the influence of TDI on the permeability of human bronchial epithelial cell (HBE; HBE135-E6E7) monolayers in vitro, and the expression of vascular endothelial growth factor (VEGF) in these cells. Methods TDI,human serum albumin (HSA) conjugates were prepared by a modification of Son's method. Fluorescein isothiocyanate-labelled dextran and transmission electron microscopy were used to evaluate the effects of TDI,HSA on HBE135-E6E7 permeability. RT-PCR and ELISA were used to evaluate VEGF gene expression and protein release from HBE135-E6E7 cells stimulated by TDI,HSA. A VEGF-neutralizing antibody was used in monolayer permeability experiments to determine the role of the VEGF pathway in this process. Results TDI,HSA significantly increased the permeability coefficients of HBE135-E6E7 monolayers (P<0.01). TDI,HSA treatment significantly increased the expression of VEGF165 and VEGF189 genes (P<0.01). ELISA showed that TDI significantly induces VEGF release from HBE135-E6E7 cells. Cells treated with TDI,HSA and VEGF-neutralizing antibody had significantly lower permeability coefficients than cells treated with TDI,HSA only (P<0.01), but still significantly higher than control cells (P<0.01). Cells treated with TDI,HSA had fewer tight junctions (TJs) than control and HSA-treated cells, and addition of the anti-VEGF antibody did not restore the original number of TJs. Conclusion TDI increases the permeability of HBE cell monolayers, partly through a VEGF-mediated pathway. This suggests the importance of VEGF in TDI-induced pulmonary diseases, but shows that other pathways may be involved in the pathogenic process. [source]