Home About us Contact | |||
Other Muscles (other + muscle)
Selected AbstractsOCTN2 is associated with carnitine transport capacity of rat skeletal musclesACTA PHYSIOLOGICA, Issue 1 2010Y. Furuichi Abstract Aim:, Carnitine plays an essential role in fat oxidation in skeletal muscles; therefore carnitine influx could be crucial for muscle metabolism. OCTN2, a sodium-dependent solute carrier, is assumed to transport carnitine into various organs. However, OCTN2 protein expression and the functional importance of carnitine transport for muscle metabolism have not been studied. We tested the hypothesis that OCTN2 is expressed at higher levels in oxidative muscles than in other muscles, and that the carnitine uptake capacity of skeletal muscles depends on the amount of OCTN2. Methods:, Rat hindlimb muscles (soleus, plantaris, and the surface and deep portions of gastrocnemius) were used for Western blotting to detect OCTN2. Tissue carnitine uptake was examined by an integration plot analysis using l -[3H]carnitine as a tracer. Tissue carnitine content was determined by enzymatic cycling methods. The percentage of type I fibres was determined by histochemical analysis. Results:, OCTN2 was detected in all skeletal muscles although the amount was lower than that in the kidney. OCTN2 expression was significantly higher in soleus than in the other skeletal muscles. The amount of OCTN2 was positively correlated with the percentage of type I fibres in hindlimb muscles. The integration plot analysis revealed a positive correlation between the uptake clearance of l -[3H]carnitine and the amount of OCTN2 in skeletal muscles. However, the carnitine content in soleus was lower than that in other skeletal muscles. Conclusion:, OCTN2 is functionally expressed in skeletal muscles and is involved in the import of carnitine for fatty acid oxidation, especially in highly oxidative muscles. [source] Human soleus muscle protein synthesis following resistance exerciseACTA PHYSIOLOGICA, Issue 2 2004T. A. Trappe Abstract Aim:, It is generally believed the calf muscles in humans are relatively unresponsive to resistance training when compared with other muscles of the body. The purpose of this investigation was to determine the muscle protein synthesis response of the soleus muscle following a standard high intensity bout of resistance exercise. Methods:, Eight recreationally active males (27 ± 4 years) completed three unilateral calf muscle exercises: standing calf press/heel raise, bent-knee calf press/heel raise, and seated calf press/heel raise. Each exercise consisted of four sets of 15 repetitions (,15 repetition maximum, RM, or ,70% 1RM). Fractional rate of muscle protein synthesis (FSR) was determined with a primed constant infusion of [2H5]phenylalanine coupled with muscle biopsies immediately and 3 h following the exercise in both the exercise and non-exercise (resting control) leg. Results:, FSR was elevated (P < 0.05) in the exercise (0.069 ± 0.010) vs. the control (0.051 ± 0.012) leg. Muscle glycogen concentration was lower (P < 0.05) in the exercise compared with the control leg (Decrease from control; immediate post-exercise: 54 ± 5; 3 h post-exercise: 36 ±4 mmol kg,1 wet wt.). This relatively high amount of glycogen use is comparable with previous studies of resistance exercise of the thigh (i.e. vastus lateralis; ,41,49 mmol kg,1 wet wt.). However, the exercise-induced increase in FSR that has been consistently reported for the vastus lateralis (,0.045,0.060% h,1) is on average ,200% higher than reported here for the soleus (0.019 ± 0.003% h,1). Conclusions:, These results suggest the relatively poor response of soleus muscle protein synthesis to an acute bout of resistance exercise may be the basis for the relative inability of the calf muscles to respond to resistance training programs. [source] Effects of stylopharyngeus muscle dysfunction on the nasopharynx in exercising horsesEQUINE VETERINARY JOURNAL, Issue 4 2004C. TESSIER Summary Reasons for performing study: Nasopharyngeal collapse has been observed in horses as a potential cause of exercise intolerance and upper respiratory noise. No treatment is currently available and affected horses are often retired from performance. Objective: To determine the effect of bilateral glossopharyngeal nerve block and stylopharyngeus muscle dysfunction on nasopharyngeal function and airway pressures in exercising horses. Methods: Endoscopic examinations were performed on horses at rest and while running on a treadmill at speeds corresponding to HRmax50, HRmax75 and HRmax, with upper airway pressures measured with and without bilateral glossopharyngeal nerve block. Results: Bilateral glossopharyngeal nerve block caused stylopharyngeus muscle dysfunction and dorsal nasopharyngeal collapse in all horses. Peak inspiratory upper airway pressure was significantly (P = 0.0069) more negative at all speeds and respiratory frequency was lower (P = 0.017) in horses with bilateral glossopharyngeal nerve block and stylopharyngeus muscle dysfunction compared to control values. Conclusions: Bilateral glossopharyngeal nerve anaesthesia produced stylopharyngeus muscle dysfunction, dorsal pharyngeal collapse and airway obstruction in all horses. Potential relevance: The stylopharyngeus muscle is probably an important nasopharyngeal dilating muscle in horses and dysfunction of this muscle may be implicated in clinical cases of dorsal nasopharyngeal collapse. Before this information can be clinically useful, further research on the possible aetiology of stylopharyngeus dysfunction and dysfunction of other muscles that dilate the dorsal and lateral walls of the nasopharynx in horses is needed. [source] Human jaw muscle strength and size in relation to limb muscle strength and sizeEUROPEAN JOURNAL OF ORAL SCIENCES, Issue 5 2004M. C. Raadsheer The aim of the present study was to investigate to what extent general factors (e.g. genotype, hormones) and factors at the craniofacial level (e.g. craniofacial size, jaw muscle architecture) contribute to the size and strength of the jaw muscles. A strong relationship of jaw muscle size and strength with that of other muscles would argue for general influences, whereas a weak relationship would argue for craniofacial influences. In 121 adult individuals, moments of maximal bite force, arm flexion force and leg extension force were measured. In addition, thicknesses of jaw muscles, arm flexor muscles and leg extensor muscles were measured using ultrasound. Relationships were assessed by using a principal component analysis. In females, one component was found in which all force moments were represented. Bite force moment, however, loaded very low. In males, two components were found. One component loaded for arm flexion and leg extension moments, the other loaded for bite force moments. In both females and males, only one component was found for the muscle thicknesses in which all muscle groups loaded similarly. It was concluded that the size of the jaw muscles was significantly related to the size of the limb muscles, suggesting that they were both subject to the same general influences. Maximal voluntary bite force moments were not significantly related to the moments of the arm flexion and leg extension forces, suggesting that besides the general influence on the muscle size, variation in bite force moment was also influenced by local variables, such as craniofacial morphology. [source] Comparison of the contractile properties, oxidative capacities and fibre type profiles of the voluntary sphincters of continence in the ratJOURNAL OF ANATOMY, Issue 3 2010Maria Buffini Abstract The external urethral sphincter (EUS) and external anal sphincter (EAS) are the principal voluntary striated muscles that sustain continence of urine and faeces. In light of their common embryological origin, shared tonic sphincteric action and synchronized electrical activity in vivo, it was expected that they would exhibit similar physiological and structural properties. However, the findings of this study using paired observations of both sphincters isolated from the rat show clearly that this is not the case. The anal sphincter is much more fatigable than the urethral sphincter. On completion of a fatigue protocol, the amplitude of the last twitch of the EAS had declined to 42 ± 3% of the first twitch, whereas the last twitch of the EUS was almost identical to that of the first (95 ± 3%). Immunocytochemical detection of myosin heavy-chain isoforms showed that this difference was not due to the presence of more slow-twitch oxidative type 1 fibres in the EUS compared with the EAS (areal densities 4 ± 1% and 5 ± 1%, respectively; P = 0.35). In addition, the fatigue difference was not explained by a greater contribution to force production by fast oxidative type 2A fibres in the urethral sphincter. In fact, the anal sphincter contained a higher areal density of type 2A fibres (56 ± 5% vs. 37 ± 4% in the EUS, P = 0.017). The higher oxidative capacity of the EUS, measured histochemically, explained its fatigue resistance. These results were surprising because the fatigue-resistant urethral muscle exhibited faster single-twitch contraction times compared with the anal sphincter (56 ± 0.87 ms vs. 72.5 ± 1.16 ms, P < 0.001). Neither sphincter expressed the type 2X myosin isoform but the fast-twitch isoform type 2B was found exclusively in the EUS (areal density 16 ± 2%). The type 2B fibres of the EUS were small (diameter 19.5 ± 0.4 ,m) in comparison to typical type 2B fibres of other muscles. As a whole the EUS is a more oxidative than glycolytic muscle. In conclusion, analysis of the twitch mechanics and fatigue of two sphincters showed that the EUS contained more fatigue-resistant muscle fibres compared with the EAS. [source] Improving vastus medialis obliquus function reduces pressure applied to lateral patellofemoral cartilageJOURNAL OF ORTHOPAEDIC RESEARCH, Issue 5 2009John J. Elias Abstract The current study was performed to characterize how improving vastus medialis obliquus (VMO) function influences the pressure applied to patellofemoral cartilage. An additional focus was characterizing how lateral and medial cartilage lesions influence cartilage pressures. Ten knees were flexed to 40°, 60°, and 80° in vitro, and forces were applied to represent the VMO and other muscles of the quadriceps group while a thin film sensor measured joint pressures. The knees were loaded with a normal VMO force, with the VMO force decreased by approximately 50%, and with the VMO unloaded. After tests were performed with the cartilage intact, all tests were repeated with a 12-mm-diameter lesion created within the lateral cartilage, with the lateral lesion repaired with silicone, and with a medial lesion created. Based on a two-way repeated measures ANOVA and post-hoc tests, increasing the force applied by the VMO significantly (p,<,0.05) decreased the maximum lateral pressure and significantly increased the maximum medial pressure at each flexion angle. A lateral cartilage lesion significantly increased the maximum lateral pressure, while a medial lesion did not significantly influence the maximum medial pressure. Improving VMO function can reduce the pressure applied to lateral cartilage when lateral lesions are present. © 2008 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 27: 578,583, 2009 [source] Neurorehabilitation of Upper Extremities in Humans with Sensory-Motor ImpairmentNEUROMODULATION, Issue 1 2002Dejan B. Popovic PhD Abstract Today most clinical investigators agree that the common denominator for successful therapy in subjects after central nervous system (CNS) lesions is to induce concentrated, repetitive practice of the more affected limb as soon as possible after the onset of impairment. This paper reviews representative methods of neurorehabilitation such as constraining the less affected arm and using a robot to facilitate movement of the affected arm, and focuses on functional electrotherapy promoting the movement recovery. The functional electrical therapy (FET) encompasses three elements: 1) control of movements that are compromised because of the impairment, 2) enhanced exercise of paralyzed extremities, and 3) augmented activity of afferent neural pathway. Liberson et al. (1) first reported an important result of the FET; they applied a peroneal stimulator to enhance functionally essential ankle dorsiflexion during the swing phase of walking. Merletti et al. (2) described a similar electrotherapeutic effect for upper extremities; they applied a two-channel electronic stimulator and surface electrodes to augment elbow extension and finger extension during different reach and grasp activities. Both electrotherapies resulted in immediate and carry-over effects caused by systematic application of FET. In studies with subjects after a spinal cord lesion at the cervical level (chronic tetraplegia) (3,5) or stroke (6), it was shown that FET improves grasping and reaching by using the following outcome measures: the Upper Extremity Function Test (UEFT), coordination between elbow and shoulder movement, and the Functional Independence Measure (FIM). Externally applied electrical stimuli provided a strong central sensory input which could be responsible for the changes in the organization of impaired sensory-motor mechanisms. FET resulted in stronger muscles that were stimulated directly, as well as exercising other muscles. The ability to move paralyzed extremities also provided awareness (proprioception and visual feedback) of enhanced functional ability as being very beneficial for the recovery. FET contributed to the increased range of movement in the affected joints, increased speed of joint rotations, reduced spasticity, and improved functioning measured by the UEFT, the FIM and the Quadriplegia Index of Function (QIF). [source] Protocol for clinical neurophysiologic examination of the pelvic floorNEUROUROLOGY AND URODYNAMICS, Issue 6 2001Simon Podnar Abstract Clinical neurophysiologic examination of the pelvic floor is performed worldwide, but there is no consensus on the choice of tests, nor on technical details of individual methods. Standardized methods are, however, necessary to obtain their valid application in different laboratories for the purpose of collection of normative data, comparison of patient data and organization of multi-center studies. It is proposed that in patients with suspected "lower motor neuron" type lesions concentric needle electromyography (CNEMG) is the most informative test to detect pelvic floor denervation/reinnervation, and the external anal sphincter (EAS) muscle is the most appropriate muscle to be examined (either in isolation,when a selective lesion is suspected,or in addition to examination of other muscles). An algorithm consisting of standardized tests including a standardized approach to CNEMG examination of the EAS is presented. The proposed electrophysiologic assessment consists of a computer-assisted analysis of denervation and reinnervation features of the CNEMG signal, a qualitative assessment of reflex and voluntary activation of EAS motor units, and of electrical (or mechanical) elicitation of the bulbocavernosus reflex in those patients in whom manual anogenital stimulation failed to elicit a robust response in the EAS. The proposed protocol could serve as a basis for further studies on validity, sensitivity and specificity of electrophysiologic assessment in patients with different types of "lower motor neuron" involvement of pelvic floor muscles and sacral dysfunction. Neurourol. Urodynam. 20:669,682, 2001. © 2001 Wiley-Liss, Inc. [source] Movement of the tongue during normal breathing in awake healthy humansTHE JOURNAL OF PHYSIOLOGY, Issue 17 2008S. Cheng Electromyographic (EMG) activity of the airway muscles suggest that genioglossus is the primary upper airway dilator muscle. However, EMG data do not necessarily translate into tissue motion and most imaging modalities are limited to assessment of the surfaces of the upper airway. In this study, we hypothesized that genioglossus moves rhythmically during the respiratory cycle and that the motion within is inhomogeneous. A ,tagged' magnetic resonance imaging technique was used to characterize respiratory-related tissue motions around the human upper airway in quiet breathing. Motion of airway tissues at different segments of the eupnoeic respiratory cycle was imaged in six adult subjects by triggering the scanner at the end of inspiration. Displacements of the ,tags' were analysed using the harmonic phase method (HARP). Respiratory timing was monitored by a band around the upper abdomen. The genioglossus moved during the respiratory cycle. During expiration, the genioglossus moved posteriorly and during inspiration, it moved anteriorly. The degree of motion varied between subjects. The maximal anteroposterior movement of a point tracked on the genioglossus was 1.02 ± 0.54 mm (mean ±s.d.). The genioglossus moved over the geniohyoid muscle, with minimal movement in other muscles surrounding the airway at the level of the soft palate. Local deformation of the tongue was analysed using two-dimensional strain maps. Across the respiratory cycle, positive strains within genioglossus reached peaks of 17.5 ± 9.3% and negative strains reached peaks of ,16.3 ± 9.3% relative to end inspiration. The patterns of strains were consistent with elongation and compression within a constant volume structure. Hence, these data suggest that even during respiration, the tongue behaves as a muscular hydrostat. [source] Phase-dependent and task-dependent modulation of stretch reflexes during rhythmical hand tasks in humansTHE JOURNAL OF PHYSIOLOGY, Issue 3 2005Ruiping Xia Phase-dependent and task-dependent modulation of reflexes has been extensively demonstrated in leg muscles during locomotory activity. In contrast, the modulation of reflex responses of hand muscles during rhythmic movement is poorly documented. The objective of this study was to determine whether comparable reflex modulation occurs in muscles controlling finger motions during rhythmic, fine-motor tasks akin to handwriting. Twelve healthy subjects performed two rhythmic tasks while reflexes were evoked by mechanical perturbations applied at various phases of each task. Electromyograms (EMGs) were recorded from four hand muscles, and reflexes were averaged during each task relative to the movement phase. Stretch reflexes in all four muscles were found to be modulated in amplitude with respect to the phase of the rhythmic tasks, and also to vary distinctly with the tasks being conducted. The extent and pattern of reflex modulation differed between muscles in the same task, and between tasks for the same muscle. Muscles with a primary role in each task showed a higher correlation between reflex response and background EMG than other muscles. The results suggest that the modulation patterns observed may reflect optimal strategies of central,peripheral interactions in controlling the performance of fine-motor tasks. As with comparable studies on locomotion, the phase-dependency of the stretch reflexes implies a dynamically fluctuating role of proprioceptive feedback in the control of the hand muscles. The clear task-dependency is also consistent with a dynamic interaction of sensory feedback and central programming, presumably adapted to facilitate the successful performance of the different fine-motor tasks. [source] |