Other Mammalian (other + mammalian)

Distribution by Scientific Domains

Terms modified by Other Mammalian

  • other mammalian cell
  • other mammalian species

  • Selected Abstracts


    Proopiomelanocortin gene expression and ,-endorphin localization in the pituitary, testis, and epididymis of stallion

    MOLECULAR REPRODUCTION & DEVELOPMENT, Issue 1 2006
    L. Soverchia
    Abstract Proopiomelanocortin (POMC) is a precursor protein that contains the sequences of several bioactive peptides including adrenocorticotropin (ACTH), ,-endorphin (,-EP), and melanocyte-stimulating-hormone (MSH). POMC is synthesized in the pituitary gland, brain, and many peripheral tissues. Immunoreactive POMC-derived peptides as well as POMC-like mRNA have been evidenced in several nonpituitary tissues, thus suggesting that POMC is actively synthesized by these tissues. The present study was aimed at evaluating if also in the case of stallion POMC-derived peptide, ,-EP, is produced locally in the testis, thus playing effects in a paracrine/autocrine fashion. To investigate this hypothesis the POMC gene expression was analyzed using 3, RACE-PCR and Northern Blot approaches in the testis and epididimys of stallion; moreover, immunocytochemical localization for ,-EP was also performed through confocal laser microscopy. The immunofluorescence results showed a positive ,-EP reaction not only in cellular nest of pituitary but also in the testis and genital tract of stallion, which function could be related with sperm mobility. Such role seem not to be no dependent on the peptide synthesized locally, because the molecular biology approach demonstrated the presence of POMC transcript in the pituitary only. In fact the Northern Blot analysis showed the presence of a single POMC transcript in the pituitary while no signal was detected in the testis and epididimys. The same results were obtained by applied 3, RACE-PCR analysis. In conclusion, opioid-derived peptide ,-EP is present in the genital tract of stallion, but is not locally produced as in other mammalian, and nonmammalian models; its possible biological function at testicular level could be linked to a long-loop feed-back mechanisms. Mol. Reprod. Dev. © 2005 Wiley-Liss, Inc. [source]


    Speciation mirrors geomorphology and palaeoclimatic history in African laminate-toothed rats (Muridae: Otomyini) of the Otomys denti and Otomys lacustris species-complexes in the ,Montane Circle' of East Africa

    BIOLOGICAL JOURNAL OF THE LINNEAN SOCIETY, Issue 4 2009
    PETER J. TAYLOR
    We adopted an integrated systematic approach to delimit evolutionary species and describe phylogeographic, morphometric and ecological relationships in Otomys denti (from the Albertine Rift, Southern Rift in Malawi and the northern Eastern Arc Mountains) and Otomys lacustris (from the Southern Rift in Tanzania and Zambia, and the southern Eastern Arc Mountains). Molecular [cytochrome (cyt) b sequences, 1143 bp, N = 18], craniometric (classical, N = 100 and geometric, N = 60) and ecological (Partial Least Squares regression of shape and ecogeographic variables) approaches show a profound, parallel disjunction between two groups: (1) Eastern Arc and Southern Rift (including the Malawi Rift) (O. lacustris and Otomys denti sungae) and (2) Albertine Rift (Otomys denti denti and Otomys denti kempi) taxa. Within both groups, cyt b sequences or craniometric analysis provided evidence for the differentiation of both southern and northern Eastern Arc from Southern Rift lineages (across the so-called Makambako Gap). Within the Albertine Rift (denti,kempi) lineage, populations from individual mountain ranges differed significantly in skull shape (but not size), but were similar genetically. Over-reliance in the past on very few morphological characters (e.g. number of molar laminae) and a polytypic species concept has obscured phylogenetic relationships and species discrimination in this group. We recognize at least three species in this group, and distinct lineages within two of these species. Each species or lineage was endemic to one of three regions: the Albertine Rift, the Malawi Rift or the Eastern Arc. Our result echo conclusions of recent studies of other mammalian and bird taxa and reflect the geomorphology and palaeoclimatic history of the region. © 2009 The Linnean Society of London, Biological Journal of the Linnean Society, 2009, 96, 913,941. [source]


    A novel synthetic mammalian promoter derived from an internal ribosome entry site

    BIOTECHNOLOGY & BIOENGINEERING, Issue 4 2006
    Shizuka Hartenbach
    Abstract Introduction of specific mutations into a synthetic internal ribosome entry site (IRESGTX) derived from the GTX homeodomain protein revealed additional transcriptional activity. This novel synthetic PGTX promoter exhibited consensus core promoter modules such as the initiator (Inr) and the partial downstream promoter elements (DPE) and mediated high-level expression of a variety of transgenes including the human vascular endothelial growth factor 121 (VEGF121), the human placental secreted alkaline phosphatase (SEAP), and the Bacillus stearothermophilus -derived secreted ,-amylase (SAMY) in Chinese hamster ovary cells (CHO-K1) and a variety of other mammalian and human cell lines. The spacing between Inr and DPE modules was found to be critical for promoter performance since introduction of a single nucleotide (resulting in PGTX2) doubled the SEAP expression levels in CHO-K1. PGTX2 reached near 70% of PSV40 -driven expression levels and outperformed constitutive phosphoglycerate kinase (PPGK) and human ubiquitin C (PhUBC) promoters in CHO-K1. Also, PGTX2 was successfully engineered for macrolide-inducible transgene expression. Owing to its size of only 182 bp, PGTX2 is one of the smallest eukaryotic promoters. Although PGTX2 was found to be a potent promoter, it retained its IRESGTX -specific translation-initiation capacity. Synthetic DNAs, which combine multiple activities in a most compact sequence format may foster advances in therapeutic engineering of mammalian cells. © 2006 Wiley Periodicals, Inc. [source]


    Expression of Genes in the Canine Pre-implantation Uterus and Embryo: Implications for an Active Role of the Embryo Before and During Invasion

    REPRODUCTION IN DOMESTIC ANIMALS, Issue 6 2008
    S Schäfer-Somi
    Contents The aim of the present study was to assess genes expressed in maternal uterine tissue and pre-implantation embryos which are presumably involved in maternal recognition and establishment of canine pregnancy. For this purpose, 10 pregnant bitches were ovariohysterectomized between days 10 and 12 after mating. Four non-pregnant bitches served as controls. Early pregnancy was verified by flushing the uterine horns with PBS solution. The collected embryos (n = 60) were stored deep-frozen (,80°C). Uterine tissue was excised, snaps frozen in liquid nitrogen and homogenized using TRI Reagent. All embryos from one litter were thawed together and also homogenized in TRI Reagent. RT-PCR was performed to prove mRNA expression of progesterone receptor, key enzymes of the prostaglandin synthesis pathway, selected growth factors, cytokines, immune cell receptors, major histocompatibility complex (MHC) and matrix-metalloproteinases (MMP). Only pregnant uteri revealed the presence of mRNA for interferon (IFN)-,, IL-4 and CD-8, which resembles the milieu in humans and other mammalians. Similarly, in day 10 embryos, mRNA for transforming growth factor-,, insulin-like growth factor-1,-2, hepatocyte growth factor, leukaemia inhibitor factor, tumour necrosis factor-,, interleukin-1,,-6,-8, cyclooxygenase-2, CD4+ cells, and MMP-2 and -9 were detected, but not MHC-I or -II. We therefore suppose that the canine embryo, like its human counterpart, actively initiates measures to prevent attacks from the maternal immune system to prepare its own adhesion, nidation, growth and further development. [source]