Home About us Contact | |||
Other Cellular Proteins (other + cellular_protein)
Selected AbstractsIntegrin signaling through FAK in the regulation of mammary stem cells and breast cancerIUBMB LIFE, Issue 4 2010Jun-Lin Guan Abstract Focal adhesion kinase (FAK) is a cytoplasmic tyrosine kinase identified as a key mediator of intracellular signaling by integrins, a major family of cell surface receptors for extracellular matrix, in the regulation of different cellular functions in a variety of cells. Upon activation by integrins through disruption of an autoinhibitory mechanism, FAK undergoes autophosphorylation and forms a complex with Src and other cellular proteins to trigger downstream signaling through its kinase activity or scaffolding function. A number of integrins are identified as surface markers for mammary stem cells (MaSCs), and both integrins and FAK are found to play crucial roles in the maintenance of MaSCs in studies using mouse models, suggesting that integrin signaling through FAK may serve as a functional marker for MaSCs. Consistent with previous studies linking increased expression and activation of FAK to human breast cancer, these findings suggest a novel cellular mechanism of FAK promotion of mammary tumorigenesis by maintaining the pools of MaSCs as targets of oncogenic transformation. Furthermore, FAK inactivation in mouse models of breast cancer also reduced the pool of mammary cancer stem cells (MaCSCs), decreased their self-renewal in vitro, and compromised their tumorigenicity and maintenance in vivo, suggesting a potential role of integrin signaling through FAK in breast cancer growth and progression through its functions in MaCSCs. This review discusses these recent advances and future studies into the mechanism of integrin signaling through FAK in breast cancer through regulation of MaCSCs that may lead to development of novel therapies for this deadly disease. © 2010 IUBMB IUBMB Life, 62(4): 268,276, 2010 [source] Identification of a novel protein from glial cells based on its ability to interact with NF-,B subunitsrJOURNAL OF CELLULAR BIOCHEMISTRY, Issue 5 2003Thersa Sweet Abstract Nuclear factor ,B (NF-,B) represents a family of inducible DNA-binding transcription factors whose activity is critical for expression of the HIV-1 genome in a broad range of cells. In addition to its interaction with the ,B DNA sequence, the association of NF-,B subunits with other cellular proteins plays an important role in stimulation of HIV-1 gene transcription in astrocytic cells. Here, we utilized a yeast two-hybrid system to screen a cDNA library from a human astrocytic cell line and were able to isolate a partial cDNA belonging to a gene with an open reading frame of 1,871 amino acid residues which binds to both the p50 and p65 subunits of NF-,B. This gene, named NF-,B-binding protein (NFBP) is located on chromosome 10q24.2-25.1 and hybridized to a single transcript of nearly 6 kb in size. It is localized to the nucleus, specifically the nucleolus of cells. Extensive computer analysis was performed with the sequence of the full length NFBP and significant homology was found between NFBP, and yeast and mouse proteins. A discussion of the potential roles of NFBP in normal and viral infected cells is included. © 2003 Wiley-Liss, Inc. [source] Heat shock proteins (chaperones) in fish and shellfish and their potential role in relation to fish health: a reviewJOURNAL OF FISH DISEASES, Issue 10 2010R J Roberts Abstract Heat shock proteins (HSPs), also known as stress proteins and extrinsic chaperones, are a suite of highly conserved proteins of varying molecular weight (c. 16,100 kDa) produced in all cellular organisms when they are exposed to stress. They develop following up-regulation of specific genes, whose transcription is mediated by the interaction of heat shock factors with heat shock elements in gene promoter regions. HSPs function as helper molecules or chaperones for all protein and lipid metabolic activities of the cell, and it is now recognized that the up-regulation in response to stress is universal to all cells and not restricted to heat stress. Thus, other stressors such as anoxia, ischaemia, toxins, protein degradation, hypoxia, acidosis and microbial damage will also lead to their up-regulation. They play a fundamental role in the regulation of normal protein synthesis within the cell. HSP families, such as HSP90 and HSP70, are critical to the folding and assembly of other cellular proteins and are also involved in regulation of kinetic partitioning between folding, translocation and aggregation within the cell. HSPs also have a wider role in relation to the function of the immune system, apoptosis and various facets of the inflammatory process. In aquatic animals, they have been shown to play an important role in health, in relation to the host response to environmental pollutants, to food toxins and in particular in the development of inflammation and the specific and non-specific immune responses to bacterial and viral infections in both finfish and shrimp. With the recent development of non-traumatic methods for enhancing HSP levels in fish and shrimp populations via heat, via provision of exogenous HSPs or by oral or water administration of HSP stimulants, they have also, in addition to the health effects, been demonstrated to be valuable in contributing to reducing trauma and physical stress in relation to husbandry events such as transportation and vaccination. [source] Heat shock protein 27 is involved in neurite extension and branching of dorsal root ganglion neurons in vitroJOURNAL OF NEUROSCIENCE RESEARCH, Issue 4 2006Kristy L. Williams Abstract Alteration of the cytoskeleton in response to growth factors and extracellular matrix proteins is necessary for neurite growth. The cytoskeletal components, such as actin and tubulin, can be modified through interaction with other cellular proteins, including the small heat shock protein Hsp27. Our previous work suggested that Hsp27 influences neurite growth, potentially via its phosphorylation state interactions with actin. To investigate further the role of Hsp27 in neurite outgrowth of adult dorsal root ganglion (DRG) neurons, we have both down-regulated endogenous Hsp27 and expressed exogenous Hsp27. Down-regulation of Hsp27 with Hsp27 siRNA resulted in a decrease of neuritic tree length and complexity. In contrast, expression of exogenous Hsp27 in these neurons resulted in an increase in neuritic tree length and branching. Collectively, these results demonstrate that Hsp27 may play a role in neuritic growth via modulation of the actin cytoskeleton. © 2006 Wiley-Liss, Inc. [source] A chloroplast transgenic approach to hyper-express and purify Human Serum Albumin, a protein highly susceptible to proteolytic degradationPLANT BIOTECHNOLOGY JOURNAL, Issue 2 2003Alicia Fernández-San Millán Summary Human Serum Albumin (HSA) accounts for 60% of the total protein in blood serum and it is the most widely used intravenous protein in a number of human therapies. HSA, however, is currently extracted only from blood because of a lack of commercially feasible recombinant expression systems. HSA is highly susceptible to proteolytic degradation in recombinant systems and is expensive to purify. Expression of HSA in transgenic chloroplasts using Shine-Dalgarno sequence (SD), which usually facilitates hyper-expression of transgenes, resulted only in 0.02% HSA in total protein (tp). Modification of HSA regulatory sequences using chloroplast untranslated regions (UTRs) resulted in hyper-expression of HSA (up to 11.1% tp), compensating for excessive proteolytic degradation. This is the highest expression of a pharmaceutical protein in transgenic plants and 500-fold greater than previous reports on HSA expression in transgenic leaves. Electron micrographs of immunogold labelled transgenic chloroplasts revealed HSA inclusion bodies, which provided a simple method for purification from other cellular proteins. HSA inclusion bodies could be readily solubilized to obtain a monomeric form using appropriate reagents. The regulatory elements used in this study should serve as a model system for enhancing expression of foreign proteins that are highly susceptible to proteolytic degradation and provide advantages in purification, when inclusion bodies are formed. [source] 5-Ethynyl-2,-deoxyuridine labeling detects proliferating cells in the regenerating avian cochlea,THE LARYNGOSCOPE, Issue 9 2009Christina L. Kaiser PhD Abstract Objectives/Hypothesis: The avian cochlea regenerates hair cells following aminoglycoside treatment through supporting cell proliferation. Immunocytochemical labeling of 5-bromo-2,-deoxyuridine (BrdU), a thymidine analog, is a popular nonradioactive marker for identifying cells in the DNA synthesis (S phase) of the cell cycle. However, it requires harsh treatments to denature double-stranded DNA for the antibody to bind BrdU. We explored a new method using 5-ethynyl-2,-deoxyuridine (EdU) as a thymidine analog and a nonantibody azide/alkyne reaction between EdU and the fluorescent probe. We propose that EdU is as effective as BrdU, but without the requirement for harsh denaturation or the use of antibodies for detection. Study Design: Two-week-old chicks received a single gentamicin injection followed by a single EdU injection 72 hours later. Cochleae were extracted 4,8 hours later, fixed, and processed for fluorescent detection of EdU. Methods: Cochleae were processed for detection of incorporated EdU using the Click-iT Imaging Kit (Invitrogen/Molecular Probes, Carlsbad, CA) and colabeled with Sox2, myosin VI, or myosin VIIa antibodies. Whole-mount cochlear preparations were examined with confocal microscopy. Results: Supporting cells incorporated EdU into their newly synthesized DNA during the 4,8 hours following the EdU injection and were readily detected with little background signal. The intensity and quantity of cells labeled were similar to or better than that seen for BrdU. Conclusions: The EdU method is as effective as BrdU, without requiring harsh denaturation or secondary antibodies to identify proliferating cells. Thus, the nonantibody EdU system allows more flexibility by enabling colabeling with multiple antibodies to other cellular proteins involved in regeneration. Laryngoscope, 2009 [source] Development of a Method for the High-Throughput Quantification of Cellular ProteinsCHEMBIOCHEM, Issue 10 2009Paolo Paganetti Dr. Abstract Hunting for huntingtin: We describe a screening assay based on the inducible expression of the mutant huntingtin protein in cells and on its highly sensitive homogenous determination. Rapid, reproducible, and robust protein determination was achieved through the use of two donor,acceptor-labeled antibodies and time-resolved FRET. The assay was developed and validated for ultra-throughput screening of low-molecular-weight compounds modulating the expression of the mutant protein. The quantification of cellular proteins is essential for the study of many different biological processes. This study describes an assay for the detection of the intracellular mutant huntingtin, the causative agent of Huntington's disease, with a method that may be generally applicable to other cellular proteins. A small recombinant protein tag that is recognized by a pair of readily available, high-affinity monoclonal antibodies was designed. This tag was then added to an inducible fragment of the mutant huntingtin protein by genetic engineering. We show that it is possible to use time-resolved FRET to detect low intracellular levels of huntingtin by a simple lysis and detection procedure. This assay was then adapted into a homogeneous, miniaturized format suitable for screening in 1536-well plates. The use of time-resolved FRET also permits the assay to be multiplexed with a standard readout of cell toxicity, thus allowing the identification of conditions causing reduction of protein levels simply due to cytotoxicity. The screening results demonstrated that the assay is able to identify compounds that modulate the levels of huntingtin both positively and negatively and that represent valuable starting points for drug discovery programs. [source] |