Home About us Contact | |||
Other Cell Lines (other + cell_line)
Selected AbstractsChromosomes 6 and 18 induce neoplastic suppression in epithelial ovarian cancer cells,INTERNATIONAL JOURNAL OF CANCER, Issue 5 2009Dimitra Dafou Abstract Metaphase comparative genomic hybridisation (CGH) studies indicate that chromosomes 4, 5, 6, 13, 14, 15 and 18 are frequently deleted in primary ovarian cancers (OCs). Therefore we used microcell-mediated chromosome transfer (MMCT) to establish the functional effects of transferring normal copies of these chromosomes into 2 epithelial OC cell lines (TOV112D and TOV21G). The in vitro neoplastic phenotype (measured as anchorage dependent and independent growth and invasion) was compared between recipient OC cell lines and multiple MMCT hybrids. Chromosomes 6 and 18 showed strong evidence of functional, neoplastic suppression for multiple hybrids in both cell lines. We also found evidence in 1 cancer cell line suggesting that chromosomes 4, 13 and 14 may also cause functional suppression. Array CGH and microsatellite analyses were used to characterise the extent of genomic transfer in chromosome 6 and 18 hybrids. A 36 MB deletion on chromosome 6 in 2 hybrids from 1 cell line mapped the candidate region proximal to 6q15 and distal to 6q22.2; and an ,10 MB candidate region spanning the centromere on chromosome 18 was identified in 2 hybrids from the other cell line. These data support reported functional effects of chromosome 6 in OC cell lines; but to our knowledge, this is the first time that functional suppression for chromosome 18 has been reported. This suggests that these chromosomes may harbour tumour suppressor-"like" genes. The future identification of these genes may have a significant impact on the understanding and treatment of the disease and the identification of novel therapeutic targets. © 2008 Wiley-Liss, Inc. [source] Proteome analysis of antibody-producing CHO cell lines with different metabolic profilesBIOTECHNOLOGY & BIOENGINEERING, Issue 2 2007Deborah E. Pascoe Abstract Two-dimensional gel electrophoresis and tandem mass spectrometry were used to identify proteins associated with a metabolic shift during fed-batch cultures of two recombinant antibody-producing CHO cell lines. The first cell line underwent a marked change in lactate metabolism during culture, initially producing lactate and then consuming it, while the second cell line produced lactate for a similar duration but did not later consume it. The first cell line displayed a declining specific antibody productivity during culture, correlating to the 2-D gel results and the intracellular antibody concentration determined by HPLC. Several statistical analysis methods were compared during this work, including a fixed fold-change criterion and t -tests using standard deviations determined in several ways from the raw data and mathematically transformed data. Application of a variance-stabilizing transformation enabled the use of a global empirical standard deviation in the t -tests. Most of the protein spots changing in each cell line did not change significantly in the other cell line. A substantial fraction of the changing proteins were glycolytic enzymes; others included proteins related to antibody production, protein processing, and cell structure. Enolase, pyruvate kinase, BiP/GRP78, and protein disulfide isomerase were found in spots that changed over time in both cell lines, and some protein changes differed from previous reports. These data provide a foundation for future investigation of metabolism in industrially relevant mammalian cell culture processes, and suggest that along with differences between cell types, the proteins expressed in cultures with low lactate concentrations may depend on how those conditions were generated. Biotechnol. Bioeng. 2007;98: 391,410. © 2007 Wiley Periodicals, Inc. [source] A different pattern of cytotoxic T lymphocyte recognition against primary and metastatic tumor cells in a patient with nonsmall cell lung carcinomaCANCER, Issue 1 2005Tetsuya So M.D. Abstract BACKGROUND Lung carcinoma represents the most frequent cause of cancer death worldwide because of tumor metastases. The objective of the current study was to analyze the immunologic response during the progress of lung carcinoma metastasis. METHODS The authors established two tumor cell lines that were derived from primary and metastatic lesions in a patient with lung carcinoma (Patient G603). One cell line (G603L) was established from the primary lesion, and the other cell line (G603AD) was established from a metastatic lesion in the right adrenal gland 7 months after the patient underwent surgery for the primary lesion. Autologous regional lymph node lymphocytes were stimulated with CD80-transfected G603L cells, then cytotoxic T lymphocytes (CTLs) were induced against both lung carcinoma cell lines. RESULTS Both G603L cells and G603AD cells expressed Class I human leukocyte antigen, intracellular cell adhesion molecule 1, and lymphocyte-associated antigen type 3 (LFA-3), but not Fas or Fas ligand on their surfaces. By stimulation with CD80-transfected G603L cells, 2 CTL clones (H2/17 and H2/36) were established from the bulk CTLs. CTL clone H2/17 lysed G603L cells but not G603AD cells, suggesting that the antigen recognized by CTL clone H2/17 was abrogated during the process of metastasis. In contrast, CTL clone H2/36 lysed both G603L cells and G603AD cells, indicating that the antigen recognized by CTL clone H2/36 was maintained in the tumor cells throughout tumor progression. CONCLUSIONS The results demonstrated the possibility that some tumor-associated antigens may be abrogated during the process of metastasis, although others are maintained. The identification of these antigens will lead to a better understanding of their immunologic role during disease progression in patients with lung carcinoma. Cancer 2005. © 2004 American Cancer Society. [source] Influence of hormones and hormone metabolites on the growth of schwann cells derived from embryonic stem cells and on tumor cell lines expressing variable levels of neurofibromin,DEVELOPMENTAL DYNAMICS, Issue 2 2008Therese M. Roth Abstract Loss of neurofibromin, the protein product of the tumor suppressor gene neurofibromatosis type 1 (NF1), is associated with neurofibromas, composed largely of Schwann cells. The number and size of neurofibromas in NF1 patients have been shown to increase during pregnancy. A mouse embryonic stem cell (mESC) model was used, in which mESCs with varying levels of neurofibromin were differentiated into Schwann-like cells. NF1 cell lines derived from a malignant and a benign human tumor were used to study proliferation in response to hormones. Estrogen and androgen receptors were not expressed or expressed at very low levels in the NF1+/+ cells, at low levels in NF1+/,cells, and robust levels in NF1,/,cells. A 17,-estradiol (E2) metabolite, 2-methoxy estradiol (2ME2) is cytotoxic to the NF1,/, malignant tumor cell line, and inhibits proliferation in the other cell lines. 2ME2 or its derivatives could provide new treatment avenues for NF1 hormone-sensitive tumors at times of greatet hormonal influence. Developmental Dynamics 237:513,524, 2008. © 2008 Wiley-Liss, Inc. [source] Identification of candidate genes involved in the radiosensitivity of esophageal cancer cells by microarray analysisDISEASES OF THE ESOPHAGUS, Issue 4 2008R. Ogawa SUMMARY., Radiotherapy plays a key role in the control of tumor growth in esophageal cancer patients. To identify the patients who will benefit most from radiation therapy, it is important to know the genes that are involved in the radiosensitivity of esophageal cancer cells. Hence, we examined the global gene expression in radiosensitive and radioresistant esophageal squamous cell carcinoma cell lines. Radiosensitivities of 13 esophageal cancer cell lines were measured. RNA was extracted from each esophageal cancer cell line and a normal esophageal epithelial cell line, and the global gene expression profiles were analyzed using a 34 594-spot oligonucleotide microarray. In the clonogenic assay, one cell line (TE-11) was identified to be highly sensitive to radiation, while the other cell lines were found to be relatively radioresistant. We identified 71 candidate genes that were differentially expressed in TE-11 by microarray analysis. The up-regulated genes included CABPR, FABP5, DSC2, GPX2, NME, CBR3, DOCK8, and ABCC5, while the down-regulated genes included RPA1, LDOC1, NDN, and SKP1A. Our investigation provided comprehensive information on genes related to radiosensitivity of esophageal cancer cells; this information can serve as a basis for further functional studies. [source] Characterization of sequence variations in human histone H1.2 and H1.4 subtypesFEBS JOURNAL, Issue 14 2005Bettina Sarg In humans, eight types of histone H1 exist (H1.1,H1.5, H1°, H1t and H1oo), all consisting of a highly conserved globular domain and less conserved N- and C-terminal tails. Although the precise functions of these isoforms are not yet understood, and H1 subtypes have been found to be dispensable for mammalian development, it is now clear that specific functions may be assigned to certain individual H1 subtypes. Moreover, microsequence variations within the isoforms, such as polymorphisms or mutations, may have biological significance because of the high degree of sequence conservation of these proteins. This study used a hydrophilic interaction liquid chromatographic method to detect sequence variants within the subtypes. Two deviations from wild-type H1 sequences were found. In K562 erythroleukemic cells, alanine at position 17 in H1.2 was replaced by valine, and, in Raji B lymphoblastoid cells, lysine at position 173 in H1.4 was replaced by arginine. We confirmed these findings by DNA sequencing of the corresponding gene segments. In K562 cells, a homozygous GCC,GTC shift was found at codon 18, giving rise to H1.2 Ala17Val because the initial methionine is removed in H1 histones. Raji cells showed a heterozygous AAA,AGA codon change at position 174 in H1.4, corresponding to the Lys173Arg substitution. The allele frequency of these sequence variants in a normal Swedish population was found to be 6.8% for the H1.2 GCC,GTC shift, indicating that this is a relatively frequent polymorphism. The AAA,AGA codon change in H1.4 was detected only in Raji cells and was not present in a normal population or in six other cell lines derived from individuals suffering from Burkitt's lymphoma. The significance of these sequence variants is unclear, but increasing evidence indicates that minor sequence variations in linker histones may change their binding characteristics, influence chromatin remodeling, and specifically affect important cellular functions. [source] Interferon alpha receptors are important for antiproliferative effect of interferon-, against human hepatocellular carcinoma cellsHEPATOLOGY RESEARCH, Issue 1 2007Bazarragchaa Damdinsuren Aim:, Interferon (IFN)-, is a promising drug for the prevention and treatment of hepatocellular carcinoma (HCC). We reported that responders to IFN-,/5-fluorouracil combination therapy expressed higher IFN alpha receptor (IFNAR)2 in tumor. Herein we studied involvement of IFNARs in response to IFN-, in HCC cells. Methods:, IFN-, sensitivity and expression of IFNARs were studied in six HCC cell lines (HuH7, PLC/PRF/5, HLE, HLF, HepG2, Hep3B) using growth-inhibitory and RT-PCR, Western blot assays. Short interfering RNAs (SiRNAs) against IFNAR1 and 2 were used to analyze the role of the IFNARs in IFN-,'s effect and signal transduction. Results:, The expressions of IFNAR1 and 2c mRNAs were higher in PLC/PRF/5 cells than those in other cell lines, and PLC/PRF/5 cells expressed abundant IFNAR2c on their cell membrane. When we examined the sensitivity of the HCC cell lines to the growth-inhibitory effect of IFN-,, PLC/PRF/5 exhibited a significant response, while the other cells were much more resistant. Knockdown of either IFNAR1 or 2 using siRNAs suppressed the IFN-,'s signal transduction (2.5-fold), and decreased the growth-inhibitory effect (down by 69.9% and 67.3%). Conclusion:, The results suggest that the expression of IFNAR1 and IFNAR2c independently are important for the antiproliferative effect of IFN-, in HCC cells. [source] Agonist-Induced Internalization and Recycling of the Human A3 Adenosine ReceptorsJOURNAL OF NEUROCHEMISTRY, Issue 4 2000Resensitization, Role in Receptor Desensitization Abstract: A3 adenosine receptors have been proposed to play an important role in the pathophysiology of cerebral ischemia with a regimen-dependent nature of the therapeutic effects probably related to receptor desensitization and down-regulation. Here we studied the agonist-induced internalization of human A3 adenosine receptors in transfected Chinese hamster ovary cells, and then we evaluated the relationship between internalization and signal desensitization and resensitization. Binding of N6 -(4-amino-3-[125I]iodobenzyl)adenosine-5,- N -methyluronamide to membranes from Chinese hamster ovary cells stably transfected with the human A3 adenosine receptor showed a profile typical of these receptors in other cell lines (KD = 1.3 ± 0.08 nM; Bmax = 400 ± 28 fmol/mg of proteins). The iodinated agonist, bound at 4°C to whole transfected cells, was internalized by increasing the temperature to 37°C with a rate constant of 0.04 ± 0.034 min -1. Agonist-induced internalization of A3 adenosine receptors was directly demonstrated by immunogold electron microscopy, which revealed the localization of these receptors in plasma membranes and intracellular vesicles. Moreover, short-term exposure of these cells to the agonist caused rapid desensitization as tested in adenylyl cyclase assays. Subsequent removal of the agonist led to restoration of the receptor function and recycling of the receptors to the cell surface. The rate constant of receptor recycling was 0.02 ± 0.0017 min -1. Blockade of internalization and recycling demonstrated that internalization did not affect signal desensitization, whereas recycling of internalized receptors was implicated in the signal resensitization. [source] Second-generation tetracycline-regulatable promoter: repositioned tet operator elements optimize transactivator synergy while shorter minimal promoter offers tight basal leakinessTHE JOURNAL OF GENE MEDICINE, Issue 7 2004Siamak Agha-Mohammadi Abstract Background The tetracycline-regulatable system is one of the most valuable tools for controlling gene expression. In its current form, however, the system is less than ideal for in vivo or gene therapy uses due to difficulties in set-up procedures, high basal leakiness, and unpredictable delivery and efficiency. Methods To address these issues, we have devised a second generation of tetracycline-regulated promoters (TREs). The second-generation TRE (SG-TRE) contains a shortened cytomegalovirus (CMV) minimal promoter together with eight tet operator sequences positioned in an optimized manner upstream of the TATA box. This construct displays far greater reduction in basal leakiness than maximal transgene expression. Conversely, maximal transgene expression is increased to a greater degree than basal leakiness by post-translational stabilization with bovine growth hormone poly A. Results In transient studies, the SG-TRE displays over 100 000-fold regulation efficiency in HeLa cells at 1:1 ratio of transactivator to reporter plasmid in the Tet-Off system. This novel promoter achieves a regulation efficiency 500- to 1000-fold higher than that of the original TRE (PhCMV*-1) in HeLa cells by displaying undetectable levels of basal leakiness without compromised maximal expression. In other cell lines, the SG-TRE proves to be more efficient than the original PhCMV*-1 in a cell-dependent manner. Furthermore, the SG-TRE preserves its enhanced regulation efficiency and its reduced basal leakiness in the context of a single positive feedback regulatory vector that presents ease of delivery of the system for use in vivo. Finally, in vivo, the biological function of granulocyte-macrophage colony stimulating factor is tightly regulated in the context of SG-TRE delivered via adeno-associated viruses. Copyright © 2004 John Wiley & Sons, Ltd. [source] p53 is dispensable for the induction of apoptosis after inhibition of protein kinase CK2THE PROSTATE, Issue 2 2010Carolin C. Schneider Abstract BACKGROUND Protein kinase CK2 is a ubiquitously expressed heterotetramer consisting of two catalytic ,/,, and two regulatory , subunits. Expression of CK2 is highly elevated in tumor cells where it protects cells from apoptosis. A variety of different compounds were tested as inhibitors of protein kinase CK2 in order to find new therapy strategies. To analyze the role of p53 in the response to CK2 inhibition we used one of the most specific CK2 inhibitors available, TBB, in different prostate cancer cell lines. METHODS We treated prostate cancer cells with the CK2 inhibitor TBB and determined its effect on CK2 activity by an in vitro phosphorylation assay and its effect on viability by an MTT assay. Furthermore, we analyzed changes in the expression of p53 and PARP cleavage by Western Blot analysis. RESULTS Inhibition of CK2 by TBB led to a decrease in cell viability and apoptosis in two cell lines which express wild-type p53 whereas two other cell lines expressing mutant or no p53 failed to show signs of apoptosis. Moreover, cell lines expressing wild-type p53 showed an increase of the amount of p53 and of its transactivation efficiency. However, down-regulation of p53 by RNAi showed that p53 is not necessary for the induction of apoptosis. CONCLUSIONS Wild-type p53 is not necessary for the induction of apoptosis by TBB in prostate cancer cells. Prostate 70: 126,134, 2010. ©2009 Wiley-Liss, Inc. [source] Lineage relationship between LNCaP and LNCaP-derived prostate cancer cell linesTHE PROSTATE, Issue 2 2004Alvin Y. Liu Abstract BACKGROUND LNCaP and its derivative cell lines, which include C4-2 (and the related C4-2B) and CL1, are used as models of prostate cancer. Unlike LNCaP, the other cell lines show features of progressed disease such as metastatic capability and hormone independence. Analyses were done to determine if C4-2 or CL1 cells were selected from pre-existent subpopulations in LNCaP. METHODS Prostate cancer cells were characterized by cluster designation (CD) phenotyping. Specific cell populations were sorted by flow cytometry. DNA array analysis was used to probe differential gene expression. RESULTS CD phenotyping showed that CL1 and C4-2 (and C4-2B) were very dissimilar, and C4-2 was more similar to LNCaP. One common difference between LNCaP and its derivatives was CD26, in which virtually all C4-2 or CL1 cells were CD26+ but only ,10% of LNCaP cells were CD26+. The CD26+ subpopulation of LNCaP was isolated and cultured in vitro. After culture, a high percentage of the cells (descended from the sorted cells) were CD26+, in contrast to those sorted by CD13 or CD44. The cultured CD13 and CD44 populations did not show a high percentage of CD13+ and CD44+ cells, respectively. CD13 and CD44 are markers, in addition to CD26, for CL1 but not for C4-2. CONCLUSIONS C4-2 arose probably from CD26+ LNCaP cells, while CL1 arose de novo. © 2004 Wiley-Liss, Inc. [source] Plasma membrane NADH-oxidoreductase in cells carrying mitochondrial DNA G11778A mutation and in cells devoid of mitochondrial DNA (,0)BIOFACTORS, Issue 4 2004Safarina G. Malik Abstract The mammalian plasma membrane (PM) NADH-oxidoreductase (PMOR) system is a multi-enzyme complex located in the plasma membrane of all eukaryotic cells, harboring at least two distinct activities, the plasma membrane NADH-ferricyanide reductase and the NADH-oxidase. To assess the behaviour of the two activities of the PMOR system, we measured the NADH-ferricyanide reductase and NADH-oxidase activities in fibroblast cell lines derived from patients carrying a mitochondrial DNA (mtDNA) G11778A mutation. We also measured the two activities in other cell lines, the HL-60 and HeLa (S3) lines, as well as in ,0 cells (cells devoid of mtDNA) generated from those lines and the fibroblast cells. These ,0 cells consequently lack oxidative phosphorylation and rely on anaerobic glycolysis for their ATP need. We have proposed that in ,0 cells, at least in part, up-regulation of the PMOR is a necessity to maintain the NAD+/NADH ratio, and a pre-requisite for cell growth and viability. We show here that the PM NADH-ferricyanide reductase activity was up-regulated in HL-AV2 (HL-60 ,0) cell lines, but not in the other ,0 and mtDNA mutant lines. The plasma membrane NADH oxidase activity was found to be up-regulated in both HL-AV2 and HeLa ,0 cell lines, but not significantly in the fibroblast ,0 and G11778A lines. [source] Induction of glutathione synthesis in human keratinocytes by Ginkgo biloba extract (EGb761)BIOFACTORS, Issue 1 2001Gerald Rimbach Abstract The objective of the present study was to characterize the action of Ginkgo biloba extract (EGb761) and its sub-fractions on glutathione homeostasis in a human keratinocyte cell culture model. Cells were incubated with EGb761, its purified flavonoid (quercetin, kaempferol, rutin) or terpenoids (gingkolides A, B, C, J, bilobalide) constituents or the vehicle for up to 72 hours. Incubation of keratinocytes with the purified flavonoids or terpenoids did not affect cellular GSH levels. However, EGb761 treatment (up to 200 ,g/ml) resulted in a dose-dependent increase of cellular GSH. Western blot analysis of extracts from cells treated with EGb761 revealed increased levels of the catalytic subunit of ,glutamylcysteinyl synthetase (,GCS), the rate-limiting enzyme in GSH synthesis. The abundance of mRNA for the catalytic subunit (assayed by RT-PCR) was also increased by the treatment with EGb761. Increased levels of cellular GSH by EGb761 were also observed in other cell lines including those from human bladder and liver as well as in murine macrophages indicating that the induction of ,GCS mRNA, protein and GSH may be an ubiquitous effect of EGb761 in mammalian cells. [source] An unusual class of PITX2 mutations in Axenfeld-Rieger syndromeBIRTH DEFECTS RESEARCH, Issue 3 2006Irfan Saadi Abstract BACKGROUND Mutations in the PITX2 homeobox gene are known to contribute to Axenfeld-Rieger syndrome (ARS), an autosomal-dominant developmental disorder. Although most mutations are in the homeodomain and result in a loss of function, there is a growing subset in the C-terminal domain that has not yet been characterized. These mutations are of particular interest because the C-terminus has both inhibitory and stimulatory activities. METHODS In this study we used a combination of in vitro DNA binding and transfection reporter assays to investigate the fundamental issue of whether C-terminal mutations result in gain or loss of function at a cellular level. RESULTS We report a new frameshift mutation in the PITX2 allele that predicts a truncated protein lacking most of the C-terminal domain (D122FS). This newly reported mutant and another ARS C-terminal mutant (W133Stop) both have greater binding than wild-type to the bicoid element. Of interest, the mutants yielded ,5-fold greater activation of the prolactin promoter in CHO cells, even though the truncated proteins were expressed at lower levels than the wild-type protein. The truncated proteins also had greater than wild-type activity in 2 other cell lines, including the LS8 oral epithelial line that expresses the endogenous Pitx2 gene. CONCLUSIONS The results indicate that the PITX2 C-terminal domain has inhibitory activity and support the notion that ARS may also be caused by gain-of-function mutations. Birth Defects Research (Part A), 2006. © 2006 Wiley-Liss, Inc. [source] Epidermal growth factor-dependent enhancement of invasiveness of squamous cell carcinoma of the breastCANCER SCIENCE, Issue 5 2010Fuyo Kimura Factors that promote the aggressiveness of squamous cell carcinoma of the breast are not well understood. To examine the involvement of cell motility and the mechanism of this behavior, a squamous cell carcinoma cell line of the breast (HBC9) was established from a metastatic lymph node of a Japanese woman. HBC9 expressed epidermal growth factor receptor (EGFR), but was negative for Her2 or Her3. The invasive ability of HBC9 was compared with that of four breast ductal carcinoma cell lines by Matrigel invasion assay. EGF stimulation induced the formation of surface protrusions and cell migration in HBC9 cells, and significantly increased the number of cells migrating through the Matrigel. The invasive ability of HBC9 was compared with other cell lines of breast carcinoma; it was much greater than that of MCF-7, BT474, or HBC5, but did not differ significantly from that of MDA-MB-231. Observation of the surface protrusions of HBC9 by confocal laser microscopy revealed co-localization of Arp2 and N-WASP with actin polymerization, detected by visualization with phalloidin, indicating that the protrusions induced by EGF were invadopodia. In HBC9 cells, cortactin also co-localized with the N-WASP/Arp2/3 complex in the protrusions. Immunohistochemistry of 12 cases of squamous cell carcinoma of the breast revealed expression of cortactin and EGFR in all of them, and this was confirmed by western blotting in two cases. These results suggest that EGF-dependent enhancement of cell motility by formation of invadopodia associated with cortactin is a cause of the clinical aggressiveness of squamous cell carcinoma of the breast. (Cancer Sci 2010; 101: 1133,1140) [source] Functional analysis of mutants of the optineurin gene, associated with some forms of glaucomaACTA OPHTHALMOLOGICA, Issue 2008D BALASUBRAMANIAN Purpose Mutations in the gene OPTN are associated with normal tension and open angle glaucomas. We have studied the effects of some of these mutations on the cellular biology of retinal ganglion cells, and tried to infer the role of the protein optineurin. Methods We transfected plasmids expressing normal or wild-type (WT) and E50K, R545Q, H26D, and H486R mutant optineurin into a variety of cells such as HeLa, COS-1, retinal pigment epithelial (RPE), and the rat retinal ganglion cell (RGC) line RGC-5, and followed their effects on cell survival by morphologic observation of cells. Expression of optineurin and its mutants was monitored by immunofluorescence staining of cells and by Western blotting. Results The E50K mutant of optineurin, which is associated with the severest phenotype, was seen to selectively induce the death of retinal ganglion cells but not of the other cell lines tested. Neither the wild type cDNA nor the other mutants have any such effect. This cell death induced by E50K OPTN was inhibited by the antioxidants N-acetylcysteine and Trolox. E50K was seen to generate reactive oxygen species (ROS), which were reduced by antioxidants. Coexpression of manganese superoxide dismutase with the E50K mutant abolished ROS production and inhibited cell death. Conclusion E50K optineurin is a gain of function mutant, which has acquired the ability to induce cell death selectively in retinal ganglion cells. This cell death was mediated by oxidative stress. The present findings suggest the possibility of antioxidant use for delaying or controlling some forms of glaucoma. [source] |