Home About us Contact | |||
Osteosarcoma Cells (osteosarcoma + cell)
Kinds of Osteosarcoma Cells Terms modified by Osteosarcoma Cells Selected AbstractsThe Aberrant Expressions of Nuclear Matrix Proteins During the Apoptosis of Human Osteosarcoma CellsTHE ANATOMICAL RECORD : ADVANCES IN INTEGRATIVE ANATOMY AND EVOLUTIONARY BIOLOGY, Issue 5 2010Zhen-Li Zhao Abstract The objective of this study was to investigate altered expressions of nuclear matrix proteins (NMPs) of human osteosarcoma (OS) MG-63 cells during curcumin-induced apoptosis of human OS MG-63 cells. MG-63 cells were cultured with curcumin (7.5 mg/L) for 72 hr. Morphological alterations of cells were captured using light microscopy and transmission electron microscopy, and cell cycle distribution was estimated by flow cytometry. NMPs were selectively extracted and subjected to two-dimensional gel electrophoresis (2-DE) analysis. Western blots were performed to determine changes in the expression levels of specific NMPs. The results demonstrated that typical characteristics of apoptosis were observed. Cellular chromatin agglutinated, cell nuclei condensed, and apoptotic bodies were formed after treatment with curcumin. The 2-DE results displayed 27 NMPs, 21 of which were identified to have change in expression levels significantly during apoptosis. The altered expressions of three of these NMPs (nucleophosmin, prohibitin, and vimentin) were further confirmed by immunoblotting. These findings indicated that the apoptosis of MG-63 cells was accompanied by the expression alteration of NMPs. Our results might help to reveal the relationship between NMPs and the regulation of gene expression in the process of apoptosis, as well as provide the basic concepts for future studies on the mechanisms of apoptosis and the therapy for bone diseases. Anat Rec, 2010. © 2010 Wiley-Liss, Inc. [source] Effects of Three-Dimensional Culturing on Osteosarcoma Cells Grown in a Fibrous Matrix: Analyses of Cell Morphology, Cell Cycle, and ApoptosisBIOTECHNOLOGY PROGRESS, Issue 5 2003Chunnuan Chen Osteosarcoma cells were cultured in stirred tank bioreactors with either a fibrous matrix or nonporous microcarriers to study the environmental effects on cell growth, morphology, cell cycle, and apoptosis. Cell cycle and apoptosis were analyzed using flow cytometry and visualized using confocal laser scanning microscopy and fluorescence microscopy. The three-dimensional (3-D) fibrous culture had better cell growth and higher metabolic rates than the two-dimensional (2-D) microcarrier culture because cells in the fibrous matrix were protected from shear stress and had lower apoptosis and cell death even under suboptimal conditions (e.g., nutrient depletion). The polyester fibrous matrix used in this study also exhibited the capability of selectively retaining viable and nonapoptotic cells and disposing apoptotic and nonviable cells. Consequently, very few apoptotic cells were found in the fibrous matrix even in the long-term (1 month) T-flask culture. In the continuous culture with packed fibrous matrixes for cell support, most cells were arrested in the G1/G0 phase after 4 days. Decreasing the dissolved oxygen level from 60 to 10% air saturation did not significantly change cell cycle and apoptosis, which remained low at ,15%. These results could explain why the fibrous bed bioreactor had good long-term stability and was advantageous for production of non-growth-associated proteins by animal cell cultures. [source] Gemcitabine inhibits viability, growth, and metastasis of osteosarcoma cell linesJOURNAL OF ORTHOPAEDIC RESEARCH, Issue 4 2005Takashi Ando Abstract Gemcitabine (dFdCyd) is an analog of cytosine arabinoside with anti-tumor activity in several human cancers. However, the efficacy of this compound in osteosarcoma has not been fully elucidated. Here we assessed the anti-tumor activity of gemcitabine using osteosarcome cell lines. In 9 human osteosarcoma cell lines (G292, HOS, MG63, NY, SaOS, HuO, HuO-3N1, HuO9, HuO9-N2), gemcitabine at the doses of > 100 nM showed significant cytotoxicity. In HOS and MG63 cell lines, gemcitabine inhibited DNA synthesis as determined by IdU labeling assay and induced apoptosis as determined by DNA fragmentation assay and May-Giemsa staining. In C3H mice inoculated s.c. with a murine osteosarcoma cell line, LM8, treatment of the mice with gemcitabine showed reduced size of the primary tumor associated with increased apoptotic cells and a virtual absence of metastatic lesions in the lung. Gemcitabine thus had anti-tumor activity on osteosarcoma cell lines both in vitro and in vivo. The result would provide a cellular basis for application of gemcitabine to patients with osteosarcoma. © 2005 Orthopaedic Research Society. Published by Elsevier Ltd. All rights reserved. [source] VCP (p97) Regulates NFKB Signaling Pathway, Which Is Important for Metastasis of Osteosarcoma Cell LineCANCER SCIENCE, Issue 3 2002Tatsuya Asai In order to identify genes associated with metastasis, suppression subtractive hybridization (SSH) was performed using murine osteosarcoma cell line Dunn and its subline with higher metastatic potential, LM8. SSH revealed expression of the gene encoding valosin-containing protein (VCP; also known as p97) to be constitutively activated in LM8 cells, but it declined in Dunn cells when the cells became confluent. Because VCP is known to be involved in the ubiquitination process of Inhibitor-,B, (I,B,), an inhibitor of nuclear factor-,B (NF,B), whether VCP influences NF,B activation or not was examined by using VCP-transfected Dunn cells (Dunn/VCPs). When stimulated with tumor necrosis factor-, (TNF,), Dunn/VCPs showed constantly activated NF,B, although in the original Dunn cells and control vector transfectant (Dunn/Dunn-c) NF,B activation ceased when the cells became confluent. Western immunoblot analysis showed an increase of phosphorylated I,B, (p-IKB,) in the cytoplasm of confluent Dunn/Dunn-c cells compared to that of Dunn/VCPs. Therefore, decrease of p-IKB, degrading activity might be responsible for the decrease in NFKB activation. In vitro apoptosis assay demonstrated increased apoptosis rates of Dunn/Dunn-c cells after TNF, stimulation compared to those of Dunn/VCPs and LM8 cells. In vivo metastasis assay showed increased incidences of metastatic events in Dunn/VCP-1 inoculated male C3H mice compared to those in Dunn/Dunn-c inoculated mice. These findings suggested that VCP expression plays an important role in the metastatic process. Anti-apoptotic potential in these cells owing to constant NFKB activation via efficient cytoplasmic p-IKB, degrading activity may explain the increased metastatic potential of these cells. [source] L -Amino acid load to enhance PET differentiation between tumor and inflammation: an in vitro study on 18F-FET uptakeCONTRAST MEDIA & MOLECULAR IMAGING, Issue 5 2006S. Laïque Abstract Labeled amino acids (AA) are tumor tracers for use in nuclear medecine. O -(2-[18F]fluoroethyl)- L -tyrosine (FET) is transported by the L -system, known to function as an exchanger. In vitro utilization of FET, after a preload or prior to an afterload of non radioactive L -amino acids, was evaluated in order to measure the potential effects of AA content on the distinction between tumor and inflammatory lesions. Cellular uptake of FET was studied on rat osteosarcoma cells (ROS 17/2.8) and human leukocytes, initially loaded with nonradioactive L -tyrosine or L -methionine. FET efflux was evaluated from cells loaded with nonradioactive L -phenylalanine after tracer uptake. ROS 17/2.8 showed a higher sensitivity to preload and afterload effects on cellular FET content as compared with the leukocytes. We conclude that preload with L -tyrosine, prior to the administration of FET, may be a potential procedure to improve PET differentiation between tumor and inflammatory lesions. Copyright © 2006 John Wiley & Sons, Ltd. [source] Insulin glargine and receptor-mediated signalling: clinical implications in treating type 2 diabetesDIABETES/METABOLISM: RESEARCH AND REVIEWS, Issue 8 2007Derek Le Roith Abstract Most patients with type 2 diabetes mellitus will eventually require insulin therapy to achieve or maintain adequate glycaemic control. The introduction of insulin analogues, with pharmacokinetics that more closely mimic endogenous insulin secretion, has made physiologic insulin replacement easier to achieve for many patients. However, there are also concerns regarding alteration of binding affinities for the insulin receptor (IR) or insulin-like growth factor-1 receptor (IGF-1R) may increase the mitogenic potential of some analogues. Therefore, this article will review the relevant preclinical and clinical data to assess the mitogenic potential of insulin glargine, a basal insulin analogue, compared with regular human insulin (RHI). Searches of the PubMed database were performed using terms that included ,IR,' ,insulin-like growth factor-1,' ,IGF-1R,' ,type 2 diabetes mellitus,' and ,insulin glargine.' Original articles and reviews of published literature were retrieved and reviewed. Although one study reported increased binding affinity of insulin glargine for the IGF-1R and increased mitogenic potential in cells with excess IGF-1Rs (Saos/B10 osteosarcoma cells), most in vitro binding-affinity and cell-culture studies have demonstrated behaviour of insulin glargine comparable to that of RHI for both IR and IGF-1R binding, insulin signalling, and metabolic and mitogenic potential. Currently published in vivo carcinogenic studies and human clinical trial data have shown that insulin glargine is not associated with increased risk for either cancer or the development or progression of diabetic retinopathy. Copyright © 2007 John Wiley & Sons, Ltd. [source] Effects of Antrodia camphorata on viability, apoptosis, [Ca2+]i, and MAPKs phosphorylation in MG63 human osteosarcoma cellsDRUG DEVELOPMENT RESEARCH, Issue 2 2007Yih-Chau Lu Abstract The present study explored the effect of Antrodia camphorata (AC) on viability, apoptosis, mitogen-activated protein kinases (MAPKs) phosphorylation, and Ca2+ regulation in MG63 human osteosarcoma cells. AC (25,50,µg/ml) did not affect cell viability, but at 100,200,µg/ml decreased viability and induced apoptosis in a concentration-dependent manner. AC at concentrations of 25,200,µg/ml did not alter basal [Ca2+]i, but at 25,µg/ml decreased [Ca2+]i increases induced by ATP, bradykinin, histamine, and thapsigargin. ATP, bradykinin, and histamine increased cell viability while thapsigargin decreased it. AC (25,µg/ml) pretreatment failed to alter bradykinin- and thapsigargin-induced effects on viability, but potentiated ATP- and histamine-induced increases in viability. Immunoblotting showed that MG63 cells did not have background phospho-JNK and phospho-p38 mitogen-activated protein kinases (MAPKs); and AC did not induce the phosphorylation of these two MAPKs. Conversely, the cells had significant background phospho-ERK MAPK that was inhibited by 200,µg/ml AC. The ERK-specific inhibitor PD98059 also induced cell death. Collectively, in MG63 cells, AC exerted multiple effects on viability and [Ca2+]i, caused apoptosis probably via inhibition of ERK MAPK phosphorylation. Drug Dev Res 68:71,78, 2007. © 2007 Wiley-Liss, Inc. [source] Centriole separation in DNA damage-induced centrosome amplificationENVIRONMENTAL AND MOLECULAR MUTAGENESIS, Issue 8 2009Chiara Saladino Abstract Altered centrosome numbers are seen in tumor cells in response to DNA damaging treatments and are hypothesised to contribute to cancer development. The mechanism by which the centrosome and chromosome cycles become disconnected after DNA damage is not yet clear. Here, we show that centrosome amplification occurs after ionising radiation (IR) in chicken DT40 cells that lack DNA-PK, Ku70, H2AX, Xpa, and Scc1, demonstrating that these activities are not required for centrosome amplification. We show that inhibition of topoisomerase II induces Chk1-dependent centrosome amplification, a similar response to that seen after IR. In the immortalised, nontransformed hTERT-RPE1 line, we observed centriole splitting, followed by dose-dependent centrosome amplification, after IR. We found that IR results in the formation of single, not multiple, daughter centrioles during centrosome amplification in U2OS osteosarcoma cells. Analysis of BRCA1 and BRCA2 mutant tumor cells showed high levels of centriole splitting in the absence of any treatment. IR caused pronounced levels of centrosome amplification in BRCA1 mutant breast cancer cells. These data show that centrosome amplification occurs after different forms of DNA damage in chicken cells, in nontransformed human cells and in human tumor cell lines, indicating that this is a general response to DNA damaging treatments. Together, our data suggest that centriole splitting is a key step in potentiation of the centrosome amplification that is a general response to DNA damage. Environ. Mol. Mutagen. 2009. © 2009 Wiley-Liss, Inc. [source] Arsenite induces delayed mutagenesis and transformation in human osteosarcoma cells at extremely low concentrationsENVIRONMENTAL AND MOLECULAR MUTAGENESIS, Issue 5 2003Kanae Mure Abstract Arsenite is a human multisite carcinogen, but its mechanism of action is not known. We recently found that extremely low concentrations (,0.1 ,M) of arsenite transform human osteosarcoma TE85 (HOS) cells to anchorage-independence. In contrast to other carcinogens which transform these cells within days of exposure, almost 8 weeks of arsenite exposure are required for transformation. We decided to reexamine the question of arsenite mutagenicity using chronic exposure in a spontaneous mutagenesis assay we previously developed. Arsenite was able to cause a delayed increase in mutagenesis at extremely low concentrations (,0.1 ,M) in a dose-dependent manner. The increase in mutant frequency occurred after almost 20 generations of growth in arsenite. Transformation required more than 30 generations of continuous exposure. We also found that arsenite induced gene amplification of the dihydrofolate reductase (DHFR) gene in a dose-dependent manner. Since HOS cells are able to methylate arsenite at a very low rate, it was possible that active metabolites such as monomethylarsonous acid (MMAIII) contributed to the delayed mutagenesis and transformation in these cells. However, when the assay was repeated with MMAIII, we found no significant increase in mutagenesis or transformation, suggesting that arsenite-induced delayed mutagenesis and transformation are not caused by arsenite's metabolites, but by arsenite itself. Our results suggest that long-term exposure to low concentrations of arsenite may affect signaling pathways that result in a progressive genomic instability. Environ. Mol. Mutagen. 41:322,331, 2003. © 2003 Wiley-Liss, Inc. [source] Treatment of an osteoblastic osteosarcoma in an aged geldingEQUINE VETERINARY EDUCATION, Issue 4 2010T. Springer Summary A 27-year-old Thoroughbred gelding was examined for a right nasal mass visible inside the right nares. Airflow through the right nostril was absent. Endoscopy and radiography revealed the mass to occupy the entire right nasal passage. Nasal biopsies were inconclusive, so en bloc resection was performed. A diagnosis of an incompletely resected osteoblastic osteosarcoma was made. Endoscopic biopsies performed 4 weeks post surgery revealed osteosarcoma cells present in the caudal right nasal cavity. Metastatic disease was not present in mandibular lymph node aspirates or on thoracic radiographs. The right nasal passage was irradiated with 12 treatments over the course of 4 weeks. Comfort and quality of life were excellent during treatment and no adverse side effects were noted. Endoscopy and follow-up biopsies at 1, 2, 4, 12 and 14 months post radiation therapy have not found any evidence of regrowth of the osteosarcoma. [source] Inhibition of urokinase receptor gene expression and cell invasion by anti-uPAR DNAzymes in osteosarcoma cellsFEBS JOURNAL, Issue 14 2005Charles E. De Bock The urokinase-type plasminogen activator (uPA) receptor (uPAR) has been implicated in signal transduction and biological processes including cancer metastasis, angiogenesis, cell migration, and wound healing. It is a specific cell surface receptor for its ligand uPA, which catalyzes the formation of plasmin from plasminogen, thereby activating the proteolytic cascade that contributes to the breakdown of extracellular matrix, a key step in cancer metastasis. We have synthesized three different DNA enzymes (Dz372, Dz483 and Dz720) targeting uPAR mRNA at three separate purine (A or G),pyrimidine (U or C) junctions. Two of these DNAzymes, Dz483 and Dz720, cleaved uPAR transcript in vitro with high efficacy and specificity at a molar ratio (uPAR to Dz) as low as 1 : 0.2. When analyzed over 2 h with a 200-fold molar excess of DNAzymes to uPAR transcript, Dz720 and Dz483 were able to decrease uPAR transcript in vitro by ,,93% and ,,84%, respectively. They also showed an ability to cleave uPAR mRNA in the human osteosarcoma cell line Saos-2 after transfection. The DNAzyme Dz720 decreased uPAR mRNA within 4 h of transfection, and inhibited uPAR protein concentrations by 55% in Saos-2 cells. The decrease in uPAR mRNA and protein concentrations caused by Dz720 significantly suppressed Saos-2 cell invasion as assessed by an in vitro Matrigel assay. The use of DNAzyme methodology adds a new potential clinical agent for decreasing uPAR mRNA expression and inhibiting cancer invasion and metastasis. [source] Proteasome inhibition with bortezomib suppresses growth and induces apoptosis in osteosarcomaINTERNATIONAL JOURNAL OF CANCER, Issue 1 2010Yuriy Shapovalov Abstract Osteosarcomas are primary bone tumors of osteoblastic origin that mostly affect adolescent patients. These tumors are highly aggressive and metastatic. Previous reports indicate that gain of function of a key osteoblastic differentiation factor, Runx2, leads to growth inhibition in osteosarcoma. We have previously established that Runx2 transcriptionally regulates expression of a major proapoptotic factor, Bax. Runx2 is regulated via proteasomal degradation, and proteasome inhibition has a stimulatory effect on Runx2. In this study, we hypothesized that proteasome inhibition will induce Runx2 and Runx2-dependent Bax expression sensitizing osteosarcoma cells to apoptosis. Our data showed that a proteasome inhibitor, bortezomib, increased Runx2 and Bax in osteosarcoma cells. In vitro, bortezomib suppressed growth and induced apoptosis in osteosarcoma cells but not in nonmalignant osteoblasts. Experiments involving intratibial tumor xenografts in nude mice demonstrated significant tumor regression in bortezomib-treated animals. Immunohistochemical studies revealed that bortezomib inhibited cell proliferation and induced apoptosis in osteosarcoma xenografts. These effects correlated with increased immunoreactivity for Runx2 and Bax. In summary, our results indicate that bortezomib suppresses growth and induces apoptosis in osteosarcoma in vitro and in vivo suggesting that proteasome inhibition may be effective as an adjuvant to current treatment regimens for these tumors. Published 2009 UICC. This article is a US Government work and, as such, is in the public domain in the United States of America. [source] Ascochlorin activates p53 in a manner distinct from DNA damaging agentsINTERNATIONAL JOURNAL OF CANCER, Issue 12 2009Ji-Hak Jeong Abstract Ascochlorin, a prenylphenol antitumor antibiotic, profoundly increases the expression of endogenous p53 by increasing protein stability in the human osteosarcoma cells and human colon cancer cells. Ascochlorin also increases DNA binding activity to the p53 consensus sequence in nuclear extract and enhances transcription of p53 downstream targets. Ascochlorin specifically induces p53 phosphorylation at ser 392 without affecting ser 15 or 20, whereas DNA damaging agents typically phosphorylate these serines. Moreover, ascochlorin does not induce phosphorylation of ATM and CHK1, an established substrate of ATR that is activated by genotoxins, nor does it increase DNA strand break, as confirmed by comet assay. The structure-activity relationship suggests that p53 activation by ascochlorin is related to inhibition of mitochondrial respiration, which is further supported by the observation that respiratory inhibitors activate p53 in a manner similar to ascochlorin. These results suggest that ascochlorin, through the inhibition of mitochondrial respiration, activates p53 through a mechanism distinct from genotoxins. © 2009 UICC [source] Silencing of hSlo potassium channels in human osteosarcoma cells promotes tumorigenesisINTERNATIONAL JOURNAL OF CANCER, Issue 2 2008Béatrice Cambien Abstract Potassium channels, the most diverse superfamily of ion channels, have recently emerged as regulators of carcinogenesis, thus introducing possible new therapeutic strategies in the fight against cancer. In particular, the large conductance Ca2+ -activated K+ channels, often referred to as BK channels, are at the crossroads of several tumor-associated processes such as cell proliferation, survival, secretion and migration. Despite the high BK channel expression in osteosarcoma (OS), their function has not yet been investigated in this malignant bone pathology. Here, using stable RNA interference to reduce the expression of hSlo, the human pore-forming ,-subunit of the BK channel, in human Cal72 OS cells, we show that BK channels play a functional role in carcinogenesis. Our results reveal for the first time that BK channels exhibit antitumoral properties in OS in vivo and affect the tumor microenvironment through the modulation of both chemokine expression and leukocyte infiltration. © 2008 Wiley-Liss, Inc. [source] Preparation and properties of ,-chitin-whisker-reinforced hyaluronan,gelatin nanocomposite scaffoldsJOURNAL OF APPLIED POLYMER SCIENCE, Issue 6 2010Parintorn Hariraksapitak Abstract Tissue scaffolds made of naturally derived polymers present poor mechanical properties, which may limit their actual utilization in certain areas where high strength is a key criterion. This study was aimed at developing tissue scaffolds from a 50 : 50 w/w blend of hyaluronan (HA) and gelatin (Gel) that contained different amounts of acid-hydrolyzed ,-chitin whiskers (CWs) by a freeze-drying method. The weight ratios of the CWs to the blend were 0,30%. These scaffolds were characterized for their physical, physicochemical, mechanical, and biological properties. Regardless of the CW content, the average pore size of the scaffolds ranged between 139 and 166 ,m. The incorporation of 2% CWs in the HA,Gel scaffolds increased their tensile strength by about two times compared to those of the other groups of the scaffolds. Although the addition of 20,30% CWs in the scaffolds improved their thermal stability and resistance to biodegradation, the scaffolds with 10% CWs were the best for supporting the proliferation of cultured human osteosarcoma cells (SaOS-2). © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010 [source] Focal Adhesion Kinase pp125FAK Interacts With the Large Conductance Calcium-Activated hSlo Potassium Channel in Human Osteoblasts: Potential Role in Mechanotransduction,JOURNAL OF BONE AND MINERAL RESEARCH, Issue 10 2003Roger Rezzonico Abstract Molecular events of mechanotransduction in osteoblasts are poorly defined. We show that the mechanosensitive BK channels open and recruit the focal adhesion kinase FAK in osteoblasts on hypotonic shock. This could convert mechanical signals in biochemical events, leading to osteoblast activation. Introduction: Mechanical strains applied to the skeleton influence bone remodeling and architecture mainly through the osteoblast lineage. The molecular mechanisms involved in osteoblastic mechanotransduction include opening of mechanosensitive cation channels and the activation of protein tyrosine kinases, notably FAK, but their interplay remains poorly characterized. The large conductance K+ channel (BK) seems likely as a bone mechanoreceptor candidate because of its high expression in osteoblasts and its ability to open in response to membrane stretch or hypotonic shock. Propagation of the signals issued from the mechanosensitivity of BK channels inside the cell likely implies complex interactions with molecular partners involved in mechanotransduction, notably FAK. Methods: Interaction of FAK with the C terminus of the hSlo ,-subunit of BK was investigated using the yeast two-hybrid system as well as immunofluorescence microscopy and coimmunoprecipitation experiments with a rabbit anti-hslo antibody on MG63 and CAL72 human osteosarcoma cell lines and on normal human osteoblasts. Mapping of the FAK region interacting with hSlo was approached by testing the ability of hSlo to recruit mutated ot truncated FAK proteins. Results: To the best of our knowledge, we provide the first evidence of the physical association of FAK with the intracellular part of hslo. We show that FAK/hSlo interaction likely takes place through the Pro-1-rich domain situated in the C-terminal region of the kinase. FAK/hSlo association occurs constitutively at a low, but appreciable, level in human osteosarcoma cells and normal human osteoblasts that express endogenous FAK and hSlo. In addition, we found that application of an hypo-osmotic shock to these cells induced a sustained activation of BK channels associated to a marked increase in the recruitment of FAK on hSlo. Conclusions: Based on these data, we propose that BK channels might play a triggering role in the signaling cascade induced by mechanical strains in osteoblasts. [source] 2-methoxyestradiol-mediated anti-tumor effect increases osteoprotegrin expression in osteosarcoma cellsJOURNAL OF CELLULAR BIOCHEMISTRY, Issue 5 2010Michaela B. Benedikt Abstract Osteosarcoma is a bone tumor that frequently develops during adolescence. 2-Methoxyestradiol (2-ME), a naturally occurring metabolite of 17,-estradiol, induces cell cycle arrest and cell death in human osteosarcoma cells. To investigate whether the osteoprotegrin (OPG) protein plays a role in 2-ME actions, we studied the effect of 2-ME treatment on OPG gene expression in human osteosarcoma cells. 2-ME treatment induced OPG gene promoter activity and mRNA levels. Also, Western blot analysis showed that 2-ME treatment increased OPG protein levels in MG63, KHOS, 143B and LM7 osteosarcoma cells by 3-, 1.9-, 2.8-, and 2.5-fold, respectively, but did not affect OPG expression in normal bone cells. In addition, increases in OPG protein levels were observed in osteosarcoma cell culture media after 3 days of 2-ME treatment. The effect of 2-ME on osteosarcoma cells was ligand-specific as parent estrogen, 17,-estradiol and a tumorigenic estrogen metabolite, 16,-hydroxyestradiol, which do not affect osteosarcoma cell cycle and cell death, had no effect on OPG protein expression. Furthermore, co-treating osteosarcoma cells with OPG protein did not further enhance 2-ME-mediated anti-tumor effects. OPG-released in 2-ME-treated cultures led to an increase in osteoblastic activity and a decrease in osteoclast number, respectively. These findings suggest that OPG is not directly involved in 2-ME-mediated anti-proliferative effects in osteosarcoma cells, but rather participates in anti-resorptive functions of 2-ME in bone tumor environment. J. Cell. Biochem. 109: 950,956, 2010. © 2010 Wiley-Liss, Inc. [source] 2-methoxyestradiol-induced cell death in osteosarcoma cells is preceded by cell cycle arrestJOURNAL OF CELLULAR BIOCHEMISTRY, Issue 5 2008Avudaiappan Maran Abstract 2-Methoxyestradiol (2-ME), a naturally occurring mammalian metabolite of 17,-Estradiol (E2), induces cell death in osteosarcoma cells. To further understand the molecular mechanisms of action, we have investigated cell cycle progression in 2-ME-treated human osteosarcoma (MG63, SaOS-2 and LM8) cells. At 5 µM, 2-ME induced growth arrest by inducing a block in cell cycle; 2-ME-treatment resulted in 2-fold increases in G1 phase cells and a decrease in S phase cells in MG63 and SaOS-2 osteosarcoma cell lines, compared to the appropriate vehicle controls. 2-ME-treatment induced a threefold increase in the G2 phase in LM8 osteosarcoma cells. The results demonstrated steroid specificity, as the tumorigenic metabolite, 16,-hydroxyestradiol (16-OHE), did not have any effect on cell cycle progression in osteosarcoma cells. The cell cycle arrest coincided with an increase in expression of the cell cycle markers p21, p27 and p53 proteins in 2-ME-treated osteosarcoma cells. Also, MG63 cells, transiently transfected with cDNA for a ,loss of function mutant' RNA-dependent protein kinase (PKR) protein, were resistant to 2-ME-induced cell cycle arrest. These results suggest that 2-ME works in concert with factors regulating cell cycle progression, and cell cycle arrest precedes cell death in 2-ME-treated osteosarcoma cells. J. Cell. Biochem. 104: 1937,1945, 2008. © 2008 Wiley-Liss, Inc. [source] The classic receptor for 1,,25-dihydroxy vitamin D3 is required for non-genomic actions of 1,,25-dihydroxy vitamin D3 in osteosarcoma cellsJOURNAL OF CELLULAR BIOCHEMISTRY, Issue 4 2006Soraya Bravo Abstract 1,,25-dihydroxy vitamin D3 has a major role in the regulation of the bone metabolism as it promotes the expression of key bone-related proteins in osteoblastic cells. In recent years it has become increasingly evident that in addition to its well-established genomic actions, 1,,25-dihydroxy vitamin D3 induces non-genomic responses by acting through a specific plasma membrane-associated receptor. Results from several groups suggest that the classical nuclear 1,,25-dihydroxy vitamin D3 receptor (VDR) is also responsible for these non-genomic actions of 1,,25-dihydroxy vitamin D3. Here, we have used siRNA to suppress the expression of VDR in osteoblastic cells and assessed the role of VDR in the non-genomic response to 1,,25-dihydroxy vitamin D3. We report that expression of the classic VDR in osteoblasts is required to generate a rapid 1,,25-dihydroxy vitamin D3-mediated increase in the intracellular Ca2+ concentration, a hallmark of the non-genomic actions of 1,,25-dihydroxy vitamin D3 in these cells. J. Cell. Biochem. 99: 995,1000, 2006. © 2006 Wiley-Liss, Inc. [source] Isolation and identification of 1,-hydroxy-3-epi-vitamin D3, a potent suppressor of parathyroid hormone secretionJOURNAL OF CELLULAR BIOCHEMISTRY, Issue 3 2005Alex J. Brown Abstract Since our original demonstration of the metabolism of 1,,25(OH)2D3 into 1,,25(OH)2 -3-epi-D3 in human keratinocytes, there have been several reports indicating that epimerization of the 3 hydroxyl group of vitamin D compounds is a common metabolic process. Recent studies reported the metabolism of 25OHD3 and 24(R),25(OH)2D3 into their respective C-3 epimers, indicating that the presence of 1, hydroxyl group is not necessary for the 3-epimerization of vitamin D compounds. To determine whether the presence of a 25 hydroxyl group is required for 3-epimerization of vitamin D compounds, we investigated the metabolism of 1,OHD3, a non-25 hydroxylated vitamin D compound, in rat osteosarcoma cells (ROS 17/2.8). We noted metabolism of 1,OHD3 into a less polar metabolite which was unequivocally identified as 1,OH-3-epi-D3 using the techniques of HPLC, GC/MS, and 1H-NMR analysis. We also identified 1,OH-3-epi-D3 as a circulating metabolite in rats treated with pharmacological concentrations of 1,OHD3. Thus, these results indicated that the presence of a 25 hydroxyl group is not required for 3-epimerization of vitamin D compounds. Furthermore, the results from the same studies also provided evidence to indicate that 1,OH-3-epi-D3, like 1,OHD3, is hydroxylated at C-25. We then evaluated the biological activities of 1,OH-3-epi-D3. Treatment of normal rats every other day for 7 days with 2.5 nmol/kg of 1,OH-3-epi-D3 did not raise serum calcium, while the same dose of 1,OHD3 increased serum calcium by 3.39,±,0.52 mg/dl. Interestingly, in the same rats which received 1,OH-3-epi-D3 we also noted a reduction in circulating PTH levels by 65,±,7%. This ability of 1,OH-3-epi-D3 to suppress PTH levels in normal rats without altering serum calcium was further tested in rats with reduced renal function. The results indicated that the ED50 of 1,OH-3-epi-D3 for suppression of PTH was only slightly higher than that of 1,,25(OH)2D3, but that the threshold dose of the development of hypercalcemia (total serum Ca >,10.5 mg/dl) was nearly 80 times higher. These findings indicate that 1,OH-3-epi-D3 is a highly selective vitamin D analog with tremendous potential for treatment of secondary hyperparathyroidism in chronic renal failure patients. © 2005 Wiley-Liss, Inc. [source] Impaired cell cycle regulation of the osteoblast-related heterodimeric transcription factor Runx2-Cbf, in osteosarcoma cellsJOURNAL OF CELLULAR PHYSIOLOGY, Issue 3 2009Inga A. San Martin Bone formation and osteoblast differentiation require the functional expression of the Runx2/Cbf, heterodimeric transcription factor complex. Runx2 is also a suppressor of proliferation in osteoblasts by attenuating cell cycle progression in G1. Runx2 levels are modulated during the cell cycle, which are maximal in G1 and minimal beyond the G1/S phase transition (S, G2, and M phases). It is not known whether Cbf, gene expression is cell cycle controlled in preosteoblasts nor how Runx2 or Cbf, are regulated during the cell cycle in bone cancer cells. We investigated Runx2 and Cbf, gene expression during cell cycle progression in MC3T3-E1 osteoblasts, as well as ROS17/2.8 and SaOS-2 osteosarcoma cells. Runx2 protein levels are reduced as expected in MC3T3-E1 cells arrested in late G1 (by mimosine) or M phase (by nocodazole), but not in cell cycle arrested osteosarcoma cells. Cbf, protein levels are cell cycle independent in both osteoblasts and osteosarcoma cells. In synchronized MC3T3-E1 osteoblasts progressing from late G1 or mitosis, Runx2 levels but not Cbf, levels are cell cycle regulated. However, both factors are constitutively elevated throughout the cell cycle in osteosarcoma cells. Proteasome inhibition by MG132 stabilizes Runx2 protein levels in late G1 and S in MC3T3-E1 cells, but not in ROS17/2.8 and SaOS-2 osteosarcoma cells. Thus, proteasomal degradation of Runx2 is deregulated in osteosarcoma cells. We propose that cell cycle control of Runx2 gene expression is impaired in osteosarcomas and that this deregulation may contribute to the pathogenesis of osteosarcoma. J. Cell. Physiol. 221: 560,571, 2009. © 2009 Wiley-Liss, Inc. [source] 9-Cis-retinoic acid reduces ischemic brain injury in rodents via bone morphogenetic proteinJOURNAL OF NEUROSCIENCE RESEARCH, Issue 2 2009Hui Shen Abstract Retinoic acid (RA), a biologically active derivative of vitamin A, has protective effects against damage caused by H2O2 or oxygen-glucose deprivation in mesangial and PC12 cells. In cultured human osteosarcoma cells, RA enhances the expression of bone morphogenetic protein-7 (BMP7), a trophic factor that reduces ischemia- or neurotoxin-mediated neurodegeneration in vivo. The purpose of this study is to examine whether RA reduces ischemic brain injury through a BMP7 mechanism. We found that intracerebroventricular administration of 9-cis-retinoic acid (9cRA) enhanced BMP7 mRNA expression, detected by RT-PCR, in rat cerebral cortex at 24 hr after injection. Rats were also subjected to transient focal ischemia induced by ligation of the middle cerebral artery (MCA) at 1 day after 9cRA injection. Pretreatment with 9cRA increased locomotor activity and attenuated neurological deficits 2 days after MCA ligation. 9cRA also reduced cerebral infarction and TUNEL labeling. These protective responses were antagonized by the BMP antagonist noggin given 1 day after 9cRA injection. Taken together, our data suggest that 9cRA has protective effects against ischemia-induced injury, and these effects involve BMPs. © 2008 Wiley-Liss, Inc. [source] Blocking Wnt/LRP5 signaling by a soluble receptor modulates the epithelial to mesenchymal transition and suppresses met and metalloproteinases in osteosarcoma Saos-2 cellsJOURNAL OF ORTHOPAEDIC RESEARCH, Issue 7 2007Yi Guo Abstract We previously reported the Wnt receptor low-density lipoprotein receptor-related protein 5 (LRP5) was frequently expressed in osteosarcoma (OS) tissue and correlated with metastasis and a lower disease-free survival. Subsequent in vitro analysis revealed that dominant-negative, soluble LRP5 (sLRP5) can reduce in vitro cellular invasion. In the current study, we examined the molecular mechanisms of blocking canonical Wnt signaling by sLRP5 in Saos-2 osteosarcoma cells. Transfection of sLRP5 caused a marked up-regulation of E-cadherin in this cell line. This increase in E-cadherin, seen primarily at the cell,cell contact borders, was associated with down-regulation of Slug and Twist, transcriptional repressors which mediate cancer invasion and metastasis. In contrast, N-cadherin, a mesenchymal marker, was reduced by sLRP5. In addition, blocking Wnt signaling by sLRP5 modulated other epithelial and mesenchymal markers (keratin 8 and 18, fibronectin), suggesting a reversal of epithelial,mesenchymal transition (EMT) seen during cancer progression. SLRP5 also reduced the expression of matrix metalloproteinase (MMP) 2 and 14, consistent with a decrease in invasive capacity. SLRP5 transfection decreased both Met expression and hepatocyte growth factor (HGF)-induced cell motility. Taken together, these results support a role for Wnt/LRP5 signaling in invasiveness of a subset of OS cells. © 2007 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 25:964,971, 2007 [source] RECK expression in osteosarcoma: correlation with matrix metalloproteinases activation and tumor invasivenessJOURNAL OF ORTHOPAEDIC RESEARCH, Issue 5 2007Hyun-Guy Kang Abstract Osteosarcoma is a malignant tumor of bone characterized by its high metastatic potential. For the development of metastasis, activation of matrix metalloproteinases (MMPs) is required. A novel MMPs inhibitor, reversion inducing cysteine rich protein with Kazal motifs (RECK), is known to down-regulate MMPs and suppress the invasive and metastatic potential in many tumor-derived cell lines and some types of tumors. The expression of RECK and its role in tumor invasiveness have never been studied in osteosarcoma. We examined RECK mRNA expression and MMPs activation in osteosarcoma using quantitative real time PCR, gelatin zymography, invasion assay, and transfection experiments. RECK was expressed but down-regulated in osteosarcoma cells. Activation of pro-MMP-2 was observed in all samples, whereas activation of MMP-2 and pro-MMP-9 was detected in only 11% and 7% of the samples, respectively. MMP-9 was not activated in any of the samples. The level of RECK expression was inversely correlated with pro-MMP-2 activation, and overexpression of RECK by transfection resulted in decreased pro-MMP-2 activation and reduced tumor invasiveness. These findings suggest that RECK plays an important role in the invasiveness of osteosarcoma. © 2007 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 25:696,702, 2007 [source] Anticancer effects of zoledronic acid against human osteosarcoma cellsJOURNAL OF ORTHOPAEDIC RESEARCH, Issue 6 2006B. Kubista Abstract Based on neoadjuvant chemotherapy, the prognosis of osteosarcoma patients has improved dramatically. However, due to therapy resistance in patient subgroups, the development of new treatment strategies is still of utmost importance. The aim of our study was to test the effects of the nitrogen-containing bisphosphonate zoledronic acid (ZOL) on osteosarcoma cell lines (N,=,9). Exposure to ZOL at low micromolar concentrations induced a dose- and time-dependent block of DNA synthesis and cell cycle progression followed by microfilament breakdown and apoptosis induction. The ZOL-induced cell cycle accumulation in S phase was accompanied by significant changes in the expression of cyclins and cyclin-dependent kinase inhibitors with a prominent loss of cyclin E and D1. ZOL not only inhibited growth but also migration of osteosarcoma cells. The mevalonate pathway intermediary geranyl-geraniol (GGOH) but not farnesol (FOH) significantly inhibited the anticancer effects of ZOL against osteosarcoma cells. Correspondingly, ZOL sensitivity correlated with the blockade of protein geranylgeranylation indicated by unprenylated Rap1. Overexpression of even high levels of P-glycoprotein, as frequently present in therapy-resistant osteosarcomas, did not impair the anticancer activity of ZOL. Summarizing, our data suggest that ZOL, which selectively accumulates in the bone, represents a promising agent to improve osteosarcoma therapy. © 2006 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res [source] Titanium particles induce the immediate early stress responsive chemokines IL-8 and MCP-1 in osteoblastsJOURNAL OF ORTHOPAEDIC RESEARCH, Issue 3 2002Elizabeth A. Fritz Abstract Exposure of human osteoblasts to ultrafine titanium (Ti) particles has been shown to alter osteoblast gene expression. We previously reported that Ti particles can increase IL-6 release and suppress the gene expression of procollagens ,1[I] and ,1[III] in human osteoblasts. In this study, we now demonstrate that Ti particles can rapidly induce the chemotactic cytokines interleukin-8 (IL-8) and monocyte chemoattractant protein-1 (MCP-1), two immediate early stress responsive chemokines important for the activation and chemotaxis of neutrophils and macrophages, respectively. In MG-63 osteosarcoma cells and bone marrow derived primary osteoblasts Ti particles selectively increased the steady state levels of IL-8 and MCP-1 mRNA in a time and concentration dependent manner. The increased chemokine mRNA correlated with increased secretion of IL-8 and MCP-1 protein. Actinomycin D, a potent RNA polymerase II inhibitor, blocked the Ti particle induction of IL-8 and MCP-1 mRNA expression, whereas cycloheximide, which inhibits protein synthesis, failed to inhibit chemokine gene expression suggesting Ti particles directly target activation of chemokine gene transcription. Consistent with a transcriptional mechanism not involving new protein synthesis, we demonstrate that Ti particles induce the binding of the p65 and p50 subunits of the latent transcription factor NF-,B to the IL-8 gene promoter. Taken together, these data demonstrate that Ti particles can activate transcription of the stress responsive chemokine genes IL-8 and MCP-1 in human osteoblasts. © 2002 Orthopaedic Research Society. Published by Elsevier Science Ltd. All rights reserved. [source] Expression of a newly defined tumor-rejection antigen SART3 in musculoskeletal tumors and induction of HLA class I-restricted cytotoxic T lymphocytes by SART3-derived peptidesJOURNAL OF ORTHOPAEDIC RESEARCH, Issue 3 2001Naotake Tsuda We recently reported that a SART3 tumor-rejection antigen possessing tumor epitopes is capable of inducing HLA class I-restricted and tumor-specific cytotoxic T lymphocytes in cancer patients. We studied the expression of the SART3 protein in musculoskeletal tumors to find a molecule for potential use in tumor-specific immunotherapy. The SART3 was detected at protein levels in 100% of the osteosarcoma cell lines (n = 20), in 50% of the musculoskeletal tumor tissue specimens (n = 32), and at notable levels in 67% of osteosarcoma tissues (n = 9) and malignant fibrous histiocytosis tissues (n = 9), respectively. SART3-derived peptides at positions 109-118 and 315-323 induced HLA-A24-restricted tumor-specific cytoxic T lymphocytes from peripheral blood mononuclear cells of patients with osteosarcoma or malignant fibrous histiocytosis. These peptide-induced cytotoxic T lymphocytes recognized HLA-A24+ SART3+ osteosarcoma cells but not HLA-A24, or SART3, cells. These results suggest that the SART3 protein and its derived peptides could be molecules appropriate for use in specific immunotherapies for approximately 60% of HLA-A24+ patients with osteosarcoma or malignant fibrous histiocytosis. © 2001 Orthopaedic Research Society. Published by Elsevier Science Ltd. All rights reserved. [source] Rapid quantitative bioassay of osteoinductionJOURNAL OF ORTHOPAEDIC RESEARCH, Issue 3 2000Huston Davis Adkisson We developed a reproducible, relatively rapid bioassay that quantitatively correlates with the osteoinductive capacity of demineralized bone matrix obtained from human long bones. We have found that Saos human osteosarcoma cells proliferate in response to incubation with demineralized bone matrix and that an index of this proliferative activity correlates with demineralized bone matrix-induced osteogenesis in vivo. The bioassay (Saos cell proliferation) had an interassay coefficient of variation of 23 ± 2% and an intra-assay cocfficient of 11 ± 1%. Cell proliferation was normalized to a standard sample of demineralized bone matrix with a clinically high osteoinductive capacity, which was assigned a value of one. The Saos cell proliferation for each sample was related to the standard and assigned a value placing it into thc low (0.00-0.39), intermediate (0.40-0.69). or high (0.70-1.49) osteoinductivc index group. Osteoinduction of human demineralized bone matrix was quantitated by expressing new bone formation as a function of the total bone volume (new bone plus the demineralized bone powder). The demineralized bone matrix was placed in pouches formed in the rectus abdominis muscles of athymic rats, and endochondral bone formation was assessed at 35 days following implantation, when marrow spaces in the ossicles were formed by new bone bridging the spaces between demineralized bone matrix particles. The proliferative index correlated with the area of new bone formation in histological sections ol the newly formed ossicles. When the proliferative index (the osteoinductive index) was divided into low, intermediate. and high groups, the correlation between it and new bone formation (osteoinduction) was 0.850 (p < 0.0005) in 25 samples of demineralized bone matrix. There was no overlap in the osteoinduction stimulated between the samples with low and high osteoinductive indices. We conclude that the proliferation assay is useful for the routine screening of bone allograft donors for osteoinductivc potential. Furthermore, the two-dimensional area of new bone formation. as it relates to total new bone area, is a quantitative measure of osteoinduction. [source] Signal transduction pathways involved in the stimulation of tissue type plasminogen activator by interleukin-1, and Porphyromonas gingivalis in human osteosarcoma cellsJOURNAL OF PERIODONTAL RESEARCH, Issue 5 2006Yu-Chao Chang Background:, Recently, evidences have shown that tissue type plasminogen activator (t-PA) may play an important role in the pathogenesis of periodontal diseases. However, the mechanisms and signal transduction pathways involved in the production of t-PA in human osteosarcoma cells are not fully understood. Objectives:, The purpose of this study was to investigate the caseinolytic activity in human osteosarcoma cell line U2OS cells stimulated with interleukin-1, (IL-1,) or Porphyromonas gingivalis in the absence or presence of p38 inhibitor SB203580, mitogen-activated protein kinase kinase (MEK) inhibitor U0126, and phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002. Methods:, IL-1, and the supernatants of P. gingivalis were used to evaluate the caseinolytic activity in U2OS cells by using casein zymography and enzyme-linked immunosorbent assay (ELISA). Furthermore, to search possible signal transduction pathways, SB203580, U0126, and LY294002 were added to test how they modulated the caseinolytic activity. Results:, Casein zymography exhibited a caseinolytic band with a molecular weight of approximately 70 kDa, suggestive of the presence of t-PA. Secretion of t-PA was found to be stimulated with IL-1, and P. gingivalis during a 2-day culture period (p < 0.05). From the results of casein zymography and ELISA, SB203580, U0126, and LY294002 significantly reduced the IL-1, or P. gingivalis -stimulated t-PA production, respectively (p < 0.05). Conclusions:, Our findings demonstrated that IL-1, and P. gingivalis enhance t-PA production in human osteosarcoma cells, and that the signal transduction pathways p38, MEK, and PI3K are involved in the inhibition of t-PA. SB203580, U0126, and LY294002 suppress t-PA production and/or activity and may therefore be valuable therapeutics in t-PA-mediated periodontal destruction, and might be proved clinically useful agents, in combination with standard treatment modalities, in the treatment of periodontitis. [source] C5a modulation of interleukin-1, -induced interleukin-6 production by human osteoblast-like cellsJOURNAL OF PERIODONTAL RESEARCH, Issue 3 2000John M. Pobanz Periodontal bone resorption is controlled by osteoblast products, including interleukin (IL)-6, which are stimulated by other cytokines and complement components in the pro-inflammatory milieu. This study demonstrated that human osteoblast-like osteosarcoma cells (MG-63) responded to human recombinant (hr) C5a by releasing significant amounts of the bone-resorbing cytokine IL-6. C5a-induced release of IL-6 was enhanced 330% when cells were exposed to IL-1, prior to C5a challenge at optimal concentrations (1.0 ,g/ml C5a, 0.1 ng/ml IL-1,). Cells simultaneously challenged with these concentrations of C5a and IL-1, produced a 700% increase in IL-6 release relative to cells challenged with IL-1, alone. Incubation of IL-1,-treated cells with anti-human C5a receptor (C5aR) Ab resulted in a 78% suppression of the C5a-induced release of IL-6, but C5aR neutralization did not affect C5a/IL-1, co-stimulation of IL-6. In addition, neither IL-1, nor C5a significantly altered the other's cell-surface receptor relative to binding affinity or density. These results indicate that while MG-63 cells express functional C5aRs, the synergistic effect of C5a and IL-1, on osteoblast IL-6 production is probably controlled by post-receptor signaling events. C5a agonists and antagonist used to alter critical C5a concentrations may present a new point of therapeutic intervention for the treatment of inflammatory bone resorption such as is found in periodontitis. [source] |