Osteoblast Activity (osteoblast + activity)

Distribution by Scientific Domains


Selected Abstracts


Surface Structures and Osteoblast Activity on Biomedical Polytetrafluoroethylene Treated by Long-Pulse, High-Frequency Oxygen Plasma Immersion Ion Implantation

ADVANCED ENGINEERING MATERIALS, Issue 5 2010
Liping Tong
Abstract Polytetrafluoroethylene (PTFE) is a biologically safe polymer used widely in clinical medicine including oral and orthopedic surgery. However, the high bio-inertness of PTFE has hampered wider applications in the biomedical fields. In this work, we extend the treatment time in long-pulse, high-frequency oxygen plasma immersion ion implantation of PTFE and a more superhydrophobic surface with a water contact angle of 160° is created. X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM) reveal that the optimized long-pulse, high-frequency oxygen plasma immersion ion implantation process induces a rougher surface and to a lesser extent alters the surface oxygen concentration on the PTFE. Our data, especially long-term contact angles, suggest that the superhydrophobility stems from surface roughness alteration. Furthermore, the activity of MC3T3-E1 osteoblasts cultured on the treated surfaces is promoted in terms of quantities and morphology. [source]


Editorial: Positive Effects of Intravenous Zoledronic Acid on Bone Remodeling and Structure: Are Different Effects on Osteoblast Activity to Other Oral Bisphosphonates Responsible?,

JOURNAL OF BONE AND MINERAL RESEARCH, Issue 1 2008
Peter R Ebeling MD
No Abstracts. [source]


Involvement of p53 in phthalate effects on mouse and rat osteoblasts,

JOURNAL OF CELLULAR BIOCHEMISTRY, Issue 2 2009
M.G. Sabbieti
Abstract The role of two estrogen-mimicking compounds in regulating osteoblast activities were examined. Previously, our attention was focused on benzyl butyl phthalate (BBP) and di- n -butyl phthalate (DBP) since previous works showed that they enter the cytoplasm, bioaccumulate, modify actin cytoarchitecture and exert mitogenic effects involving microfilament disruption, and nuclear actin and lamin A regulation in Py1a rat osteoblasts. In this study we showed that BBP and DBP cause DNA base lesions both in MT3T3-E1 osteoblasts and in mouse primary calvarial osteoblasts (COBs). In addition, treatment with the above effectors caused an increase of p53 and phospho-p53 (ser-15 and ser-20) as well as an increase of apoptotic proteins with consequent decrease of cell viability. Moreover, treatment with phthalates did not modified p53 and phospho-p53 expression in Py1a rat osteoblasts. It is of relevance that in p53 knockdown mouse osteoblasts a proliferative effect of phthalates, similar to that observed in rat Py1a osteoblasts, was found. In conclusion, our data demonstrated that phthalates induce osteoblast apoptosis, which is, at least in part, mediated by p53 activation, suggesting that the proliferative effects could be due to p53 missing activation or p53 mutation. J. Cell. Biochem. 107: 316,327, 2009. © 2009 Wiley-Liss, Inc. [source]


Nitric oxide protects osteoblasts from oxidative stress-induced apoptotic insults via a mitochondria-dependent mechanism,

JOURNAL OF ORTHOPAEDIC RESEARCH, Issue 10 2006
Chia-Chen Chang
Abstract Nitric oxide (NO) contributes to the regulation of osteoblast activities. In this study, we evaluated the protective effects of NO pretreatment on oxidative stress-induced osteoblast apoptosis and its possible mechanism using neonatal rat calvarial osteoblasts as the experimental model. Exposure of osteoblasts to sodium nitroprusside (SNP) at a low concentration of 0.3 mM significantly increased cellular NO levels without affecting cell viability. However, when the concentration reached a high concentration of 2 mM, SNP increased the levels of intracellular reactive oxygen species and induced osteoblast injuries. Thus, administration of 0.3 and 2 mM SNP in osteoblasts were respectively used as sources of NO and oxidative stress. Pretreatment with NO for 24 h significantly ameliorated the oxidative stress-caused morphological alterations and decreases in alkaline phosphatase activity, and reduced cell death. Oxidative stress induced osteoblast death via an apoptotic mechanism, but NO pretreatment protected osteoblasts against the toxic effects. The mitochondrial membrane potential was significantly reduced following exposure to the oxidative stress. However, pretreatment with NO significantly lowered the suppressive effects. Oxidative stress increased cellular Bax protein production and cytochrome c release from mitochondria. Pretreatment with NO significantly decreased oxidative stress-caused augmentation of Bax and cytochrome c protein levels. In parallel with cytochrome c release, oxidative stress induced caspase-3 activation and DNA fragmentation. Pretreatment with NO significantly reduced the oxidative stress-enhanced caspase-3 activation and DNA damage. Results of this study show that NO pretreatment can protect osteoblasts from oxidative stress-induced apoptotic insults. The protective action involves a mitochondria-dependent mechanism. © 2006 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 24:1917,1925, 2006 [source]


First-line treatment with bortezomib rapidly stimulates both osteoblast activity and bone matrix deposition in patients with multiple myeloma, and stimulates osteoblast proliferation and differentiation in vitro

EUROPEAN JOURNAL OF HAEMATOLOGY, Issue 4 2010
Thomas Lund
Abstract Objectives:, The aim of the study was to investigate the effect of bortezomib on osteoblast proliferation and differentiation, as well as on bone matrix deposition for the first time in bisphosphonate-naïve, previously untreated patients with myeloma. Methods:, Twenty newly diagnosed patients received four cycles of bortezomib treatment, initially as monotherapy and then combined with a glucocorticoid from cycle two to four. Bone remodeling markers were monitored closely during treatment. Furthermore, the effects of bortezomib and a glucocorticoid on immature and mature osteoblasts were also studied in vitro. Results:, Treatment with bortezomib caused a significant increase in bone-specific alkaline phosphatase and pro-collagen type I N-terminal propeptide, a novel bone formation marker. The addition of a glucocorticoid resulted in a transient decrease in collagen deposition. In vitro bortezomib induced osteoblast proliferation and differentiation. Differentiation but not proliferation was inhibited by glucocorticoid treatment. Conclusions:, Bortezomib used as first-line treatment significantly increased collagen deposition in patients with multiple myeloma and osteolytic lesions, but the addition of a glucocorticoid to the treatment transiently inhibited the positive effect of bortezomib, suggesting that bortezomib may result in better healing of osteolytic lesions when used without glucocorticoids in patients that have obtained remission with a previous therapy. The potential bone-healing properties of single-agent bortezomib are currently being explored in a clinical study in patients who have undergone high-dose therapy and autologous stem cell transplantation. [source]


Osteoblast Function Is Compromised at Sites of Focal Bone Erosion in Inflammatory Arthritis,,

JOURNAL OF BONE AND MINERAL RESEARCH, Issue 9 2009
Nicole C Walsh PhD
Abstract In rheumatoid arthritis (RA), synovial inflammation results in focal erosion of articular bone. Despite treatment attenuating inflammation, repair of erosions with adequate formation of new bone is uncommon in RA, suggesting that bone formation may be compromised at these sites. Dynamic bone histomorphometry was used in a murine model of RA to determine the impact of inflammation on osteoblast function within eroded arthritic bone. Bone formation rates at bone surfaces adjacent to inflammation were similar to those observed in nonarthritic bone; therefore, osteoblast activity is unlikely to compensate for the increased bone resorption at these sites. Within arthritic bone, the extent of actively mineralizing surface was reduced at bone surfaces adjacent to inflammation compared with bone surfaces adjacent to normal marrow. Consistent with the reduction in mineralized bone formation, there was a notable paucity of cells expressing the mid- to late stage osteoblast lineage marker alkaline phosphatase, despite a clear presence of cells expressing the early osteoblast lineage marker Runx2. In addition, several members of the Dickkopf and secreted Frizzled-related protein families of Wnt signaling antagonists were upregulated in arthritic synovial tissues, suggesting that inhibition of Wnt signaling could be one mechanism contributing to impaired osteoblast function within arthritic bone. Together, these data indicate that the presence of inflammation within arthritic bone impairs osteoblast capacity to form adequate mineralized bone, thus contributing to the net loss of bone and failure of bone repair at sites of focal bone erosion in RA. [source]


Effects of Low-Dose Prednisone on Bone Metabolism,

JOURNAL OF BONE AND MINERAL RESEARCH, Issue 3 2005
Francine N Ton MD
Abstract Prednisone 5 mg/day suppresses multiple indices of bone formation in a randomized placebo-controlled trial in healthy postmenopausal females. This suggests that even low doses of prednisone may reduce bone repair or renewal and may have adverse effects on bone mass and/or bone strength. Introduction: High doses of chronic glucocorticoids are known to have adverse effects on bone, and measures to prevent bone loss are well established for doses >7.5 mg daily, because these doses can cause premature or exaggerated osteoporosis. However, it is unclear if chronic prednisone doses of 5 mg daily have the same effects on bone. There are no established recommendations for preventing glucocorticoid-induced osteoporosis in people taking prednisone 5 mg daily, a dose used frequently in medical practice to treat diseases of the lungs, joints, skin, muscles, eyes, nerves, etc. Our primary objective was to test whether prednisone 5 mg daily affects serum and urine indices of bone metabolism in healthy postmenopausal women. Our secondary objectives were to determine if prednisone 5 mg affected systolic or diastolic blood pressure or causes side effects. Materials and Methods: A double-blinded randomized placebo-controlled 8-week trial in 50 healthy postmenopausal women was conducted at the Massachusetts General Hospital Outpatient General Clinical Research Center. Patients were randomly assigned to prednisone 5 mg daily or matching placebo for 6 weeks, followed by a 2-week recovery phase. Markers of bone formation and resorption were determined at weeks 0, 2, 4, 6, and 8. Indices of osteoblast activity included serum propeptide of type I N-terminal procollagen (PINP), propeptide of type I C-terminal procollagen (PICP), osteocalcin, and bone-specific alkaline phosphatase (BSALP). Indices of osteoclast activity included urine and serum type I collagen N-telopeptide (NTX) and free urinary deoxypyridinoline (DPD). Results and Conclusions: Prednisone rapidly and significantly decreased serum PINP (p < 0.01), PICP (p < 0.01), and osteocalcin (p < 0.01) and free urinary deoxypyridinoline (p = 0.017). These changes were largely reversed during the recovery period. Side effects were indistinguishable in the two groups. Neither systolic nor diastolic blood pressure changed significantly throughout the study between the two groups. In conclusion, low-dose prednisone significantly decreases indices of bone formation and may decrease indices of bone resorption in postmenopausal women. Further studies are needed to assess the effects of low-dose prednisone on BMD and fracture risk. [source]


Capsaicin-Sensitive Sensory Neurons Contribute to the Maintenance of Trabecular Bone Integrity,

JOURNAL OF BONE AND MINERAL RESEARCH, Issue 2 2005
Sarah C Offley
Abstract This investigation used capsaicin to selectively lesion unmyelinated sensory neurons in rats. Neuronal lesioning induced a loss of trabecular integrity, reduced bone mass and strength, and depleted neuropeptides in nerve and bone. These data suggest that capsaicin-sensitive sensory nerves contribute to trabecular bone integrity. Introduction: Familial dysautomia is an autosomal recessive disease in which patients suffer from unmyelinated sensory neuron loss, reduced BMD, and frequent fractures. It has been proposed that the loss of neurotransmitters synthesized by unmyelinated neurons adversely affects bone integrity in this hereditary syndrome. The purpose of this study was to determine whether small sensory neurons are required for the maintenance of bone integrity in rats. Materials and Methods: Ten-month-old male Sprague-Dawley rats were treated with either capsaicin or vehicle. In vivo DXA scanning and ,CT scanning, and histomorphometry were used to evaluate BMD, structure, and cellular activity. Bone strength was measured in distal femoral sections. Body weight and gastrocnemius/soleus weights were measured and spontaneous locomotor activity was monitored. Peroneal nerve morphometry was evaluated using light and electron microscopy. Substance P and calcitonin gene-related peptide (CGRP) content in the sciatic nerve and proximal tibia were determined by enzyme immunoassay (EIA). Substance P signaling was measured using a sciatic nerve stimulation extravasation assay. Results: Four weeks after capsaicin treatment, there was a loss of BMD in the metaphyses of the tibia and femur. In the proximal tibia, the osteoclast number and surface increased, osteoblast activity and bone formation were impaired, and trabecular bone volume and connectivity were diminished. There was also a loss of bone strength in the distal femur. No changes occurred in body weight, 24-h grid-crossing activity, weight bearing, or muscle mass after capsaicin treatment, indicating that skeletal unloading did not contribute to the loss of bone integrity. Capsaicin treatment destroyed 57% of the unmyelinated sensory axons, reduced the substance P and CGRP content in the sciatic nerve and proximal tibia, and inhibited neurogenic extravasation. Conclusion: These results support the hypothesis that capsaicin-sensitive sensory neurons contribute to the maintenance of trabecular bone integrity. Capsaicin-sensitive neurons have efferent functions in the tissues they innervate, effects mediated by transmitters released from the peripheral nerve terminals. We postulate that the deleterious effects of capsaicin treatment on trabecular bone are mediated by reductions in local neurotransmitter content and release. [source]


Insulin-Like Growth Factor I Production Is Essential for Anabolic Effects of Thyroid Hormone in Osteoblasts,

JOURNAL OF BONE AND MINERAL RESEARCH, Issue 2 2000
Bill K. Huang
Abstract Thyroid hormone (T3) and insulin-like growth factor I (IGF-I) are critical regulators of skeletal function. T3 increases IGF-I production in bone. To assess the potential role of IGF-I as a mediator of T3 actions, we characterized phenotypic markers of osteoblast activity in two osteoblast models, normal mouse osteoblasts and MC3T3-E1 cells, exposed to T3 alone or under conditions that interfere with IGF-I actions. T3 significantly increased osteoblast 3H-proline incorporation, alkaline phosphatase (ALP), and osteocalcin. Both ,IR3, a neutralizing monoclonal antibody to the IGF-I receptor, and JB1, an IGF-I analogue antagonist, attenuated the stimulatory effects of T3. T3 effects also were decreased in cells transfected with antisense oligonucleotide (AS-ODN) to the IGF-I receptor gene. Both IGF-I and T3 had mitogenic effects that were inhibited by the antagonists. IGF-I by itself did not stimulate 3H-proline incorporation, ALP, and osteocalcin in the models used, revealing that although IGF-I is essential for the anabolic effects of T3, it acts in concert with other factors to elicit these phenotypic responses. (J Bone Miner Res 2000;15:188,197) [source]


FIAT control of osteoblast activity

JOURNAL OF CELLULAR BIOCHEMISTRY, Issue 3 2010
René St-Arnaud
Abstract The basic domain-leucine zipper transcription factor activating transcription factor 4 (ATF4) regulates most functions of the osteoblast. It is therefore not surprising that its activity should be regulated through several mechanisms. Factor inhibiting ATF4-mediated transcription (FIAT) is a leucine zipper nuclear molecule lacking a basic domain for DNA binding that interacts with ATF4 to repress its transcriptional activity. FIAT expression was monitored in parallel with ATF4 during osteoblastogenesis. The mechanism of ATF4 repression by FIAT was investigated through structure,function analysis. The physiological significance of FIAT expression in osteoblasts was studied through silencing FIAT in osteoblasts by RNA interference, as well as through characterization of two genetic mouse models: FIAT transgenic mice which overexpress FIAT in osteoblasts, and FIAT knockout mice. Studies to date show that FIAT and ATF4 are co-expressed in osteoblasts, and that FIAT inhibition of matrix mineralization requires dimerization with ATF4 through the second leucine zipper. Furthermore, transgenic mice overexpressing FIAT exhibit osteopenia. The phenotype of FIAT knockout mice is still under evaluation but the salient aspects are discussed here. Taken together, the results accumulated to date support the hypothesis that FIAT is a transcriptional repressor that modulates osteoblast function. J. Cell. Biochem. 109: 453,459, 2010. © 2009 Wiley-Liss, Inc. [source]


Cobalt ions induce chemokine secretion in primary human osteoblasts,

JOURNAL OF ORTHOPAEDIC RESEARCH, Issue 7 2009
J.M. Queally
Abstract Chemokines are major regulators of the inflammatory response and have been shown to play an important role in periprosthetic osteolysis. Titanium particles have previously been shown to induce IL-8 and MCP-1 secretion in osteoblasts. These chemokines result in the chemotaxis and activation of neutrophils and macrophages, respectively. Despite a resurgence in the use of cobalt-chromium-molybdenum alloys in metal-on-metal arthroplasty, cobalt and chromium ion toxicity in the periprosthetic area has been insufficiently studied. In this study we investigate the in vitro effect of cobalt ions on primary human osteoblast activity. We demonstrate that cobalt ions rapidly induce the protein secretion of IL-8 and MCP-1 in primary human osteoblasts. This elevated chemokine secretion is preceded by an increase in the transcription of the corresponding chemokine gene. Using a Transwell migration chemotaxis assay we also demonstrate that the chemokines secreted are capable of inducing neutrophil and macrophage migration. Furthermore, cobalt ions significantly inhibit osteoblast function as demonstrated by reduced alkaline phosphatase activity and calcium deposition. In aggregate these data demonstrate that cobalt ions can activate transcription of the chemokine genes IL-8 and MCP-1 in primary human osteoblasts. Cobalt ions are not benign and may play an important role in the pathogenesis of osteolysis by suppressing osteoblast function and stimulating the production and secretion of chemokines that attract inflammatory and osteoclastic cells to the periprosthetic area. © 2009 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 27: 855,864, 2009 [source]


ASARM-truncated MEPE and AC-100 enhance osteogenesis by promoting osteoprogenitor adhesion

JOURNAL OF ORTHOPAEDIC RESEARCH, Issue 9 2008
Andrew P. Sprowson
Abstract Matrix extracellular phosphoglycoprotein (MEPE) is a member of the SIBLING (Small Integrin-Binding Ligand, N-linked Glycoprotein) family of secreted glycophosphoproteins. Several previous studies have demonstrated that MEPE and its peptide motif, AC-100, may regulate bone mass and influence osteoblast activity, suggesting its potential for inclusion in novel therapeutic strategies aimed at increasing osteogenesis. Our study uses in vitro approaches to assess how adhesion of nonadherent cells is influenced by MEPE and whether response to MEPE is dependent on the maturity of osteoblastic cells. Truncated MEPE (ASARM removed) or AC-100 enhanced the adhesion, spreading, and focal complex formation of unadhered osteoblastic cells leading to increased differentiation and bone formation after 28 days of culture. Furthermore, addition of truncated MEPE or AC-100 to mature osteoblasts had no significant effect on bone formation. Our data supports an action for truncated MEPE and AC-100 in altering the physiology of immature poorly adherent cells which subsequently influences the way in which these cells interact with a substrate to facilitate their survival and/or commitment to the osteoblast lineage. © 2008 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 26:1256,1262, 2008 [source]


PerioGlas® Regulates Osteoblast RNA Interfering

JOURNAL OF PROSTHODONTICS, Issue 7 2008
Annalisa Palmieri PhD
Abstract Purpose: PerioGlas® (PG) is an alloplastic material that has been used for grafting periodontal osseous defects since the 1990s. In animal models, it has been proven that PG achieves histologically good repairs of surgically created defects. In clinical trials, PG is effective as an adjunct to conventional surgery in the treatment of intrabony defects; however, how PG alters osteoblast activity to promote bone formation is poorly understood. We therefore attempted to address this question by using microRNA (miRNA) microarray techniques to investigate the translation process in osteoblasts exposed to PG. Materials and Methods: By using miRNA microarrays containing 329 probes designed from human miRNA sequences, we identified several miRNA whose expression was significantly modified in osteoblast-like cell lines (MG-63) cultured with PG. Results: There were ten up-regulated miRNA (mir-337, mir-377, mir-9, mir-516, mir-515-3p, mir-496, mir-200b, mir-489, mir-25, mir-423) and two down-regulated miRNA (mir-26a, mir-30d). Conclusion: PG acts on miRNAs, which in turn regulate several messengers. Among them there are mRNAs related to bone formation and skeletal and cartilage development. The vast majority of detected genes are down-regulated, and some are homeobox genes like NOG, EN1, and CHRD. Other down-regulated genes are receptors (like GHRHR) and extracellular matrix proteins (like COMP). Although the exact mechanism of PG action on osteoblasts is still incompletely understood, these data demonstrate that PG has not only an osteoconductive effect, but also regulates bone formation. [source]


Transgenic disruption of glucocorticoid signaling in mature osteoblasts and osteocytes attenuates K/BxN mouse serum,induced arthritis in vivo

ARTHRITIS & RHEUMATISM, Issue 7 2009
Frank Buttgereit
Objective Endogenous glucocorticoids (GCs) modulate numerous biologic systems involved in the initiation and maintenance of arthritis. Bone cells play a critical role in the progression of arthritis, and some of the effects of GCs on inflammation may be mediated via these cells. The aim of this study was to investigate the impact of osteoblast-targeted disruption of GC signaling on joint inflammation, cartilage damage, and bone metabolism in the K/BxN mouse serum transfer model of autoimmune arthritis. Methods Intracellular GC signaling was disrupted in osteoblasts through transgenic overexpression of 11,-hydroxysteroid dehydrogenase type 2 under the control of a type I collagen promoter. Arthritis was induced in 5-week-old male transgenic mice and their wild-type (WT) littermates, and paw swelling was assessed daily until the mice were killed. The mice were examined by histology, histomorphometry, and microfocal computed tomography, and serum was analyzed for cytokines, adrenocorticotropic hormone, and corticosterone. Results Acute arthritis developed in both transgenic and WT mice treated with K/BxN mouse serum. However, the arthritis and local inflammatory activity were significantly attenuated in transgenic mice, as judged by clinical and histologic indices of inflammation and cartilage damage. Bone turnover and bone volume remained unchanged in arthritic transgenic mice, while WT mice exhibited stimulated bone resorption, suppressed osteoblast activity, and significantly reduced bone volume, compatible with the known effects of active inflammation on bone. Circulating levels of proinflammatory cytokines tended to be lower in arthritic transgenic mice than in control transgenic mice. Conclusion Disruption of GC signaling in osteoblasts significantly attenuates K/BxN mouse serum,induced autoimmune arthritis in mice. These data suggest that osteoblasts modulate the immune-mediated inflammatory response via a GC-dependent pathway. [source]


Pathogenesis of osteoblastic bone metastases from prostate cancer,

CANCER, Issue 6 2010
Toni Ibrahim MD
Abstract Prostate cancer is the second leading cause of cancer-related death in men. A typical feature of this disease is its ability to metastasize to bone. It is mainly osteosclerotic, and is caused by a relative excess of osteoblast activity, leading to an abnormal bone formation. Bone metastases are the result of a complex series of steps that are not yet fully understood and depend on dynamic crosstalk between metastatic cancer cells, cellular components of the bone marrow microenvironment, and bone matrix (osteoblasts and osteoclasts). Prostate cancer cells from primary tissue undergo an epithelial-mesenchymal transition to disseminate and acquire a bone-like phenotype to metastasize in bone tissue. This review discusses the biological processes and the molecules involved in the progression of bone metastases. Here we focus on the routes of osteoblast differentiation and activation, the crosstalk between bone cells and tumor cells, and the molecules involved in these processes that are expressed by both osteoblasts and tumor cells. Furthermore, this review deals with the recently elucidated role of osteoclasts in prostate cancer bone metastases. Certainly, to better understand the underlying mechanisms of bone metastasis and so improve targeted bone therapies, further studies are warranted to shed light on the probable role of the premetastatic niche and the involvement of cancer stem cells. Cancer 2010. © 2010 American Cancer Society. [source]


Remodeling and Vascular Spaces in Bone

JOURNAL OF BONE AND MINERAL RESEARCH, Issue 1 2007
Erik Fink Eriksen
Abstract In recent years, we have come to appreciate that the close association between bone and vasculature plays a pivotal role in the regulation of bone remodeling and fracture repair. In 2001, Hauge et al. characterized a specialized vascular structure, the bone remodeling compartment (BRC), and showed that the outer lining of this compartment was made up of flattened cells, displaying all the characteristics of lining cells in bone. A decrease in bone turnover leads to a decrease in surfaces covered with remodeling compartments, whereas increased turnover causes an increase. Immunoreactivity for all major osteotropic growth factors and cytokines including osteoprotegerin (OPG) and RANKL has been shown in the cells lining the BRC, which makes the BRC the structure of choice for coupling between resorption and formation. The secretion of these factors inside a confined space separated from the bone marrow would facilitate local regulation of the remodeling process without interference from growth factors secreted by blood cells in the marrow space. The BRC creates an environment where cells inside the structure are exposed to denuded bone, which may enable direct cellular interactions with integrins and other matrix factors known to regulate osteoclast/osteoblast activity. However, the denuded bone surface inside the BRC also constitutes an ideal environment for the seeding of bone metastases, known to have high affinity for bone matrix. Reduction in BRC space brought about by antiresorptive therapies such as bisphosphonates reduce the number of skeletal events in advanced cancer, whereas an increase in BRC space induced by remodeling activators like PTH may increase the bone metastatic burden. The BRC has only been characterized in detail in trabecular bone; there is, however, evidence that a similar structure may exist in cortical bone, but further characterization is needed. [source]