Home About us Contact | |||
OS Cells (os + cell)
Selected AbstractsSilencing of hSlo potassium channels in human osteosarcoma cells promotes tumorigenesisINTERNATIONAL JOURNAL OF CANCER, Issue 2 2008Béatrice Cambien Abstract Potassium channels, the most diverse superfamily of ion channels, have recently emerged as regulators of carcinogenesis, thus introducing possible new therapeutic strategies in the fight against cancer. In particular, the large conductance Ca2+ -activated K+ channels, often referred to as BK channels, are at the crossroads of several tumor-associated processes such as cell proliferation, survival, secretion and migration. Despite the high BK channel expression in osteosarcoma (OS), their function has not yet been investigated in this malignant bone pathology. Here, using stable RNA interference to reduce the expression of hSlo, the human pore-forming ,-subunit of the BK channel, in human Cal72 OS cells, we show that BK channels play a functional role in carcinogenesis. Our results reveal for the first time that BK channels exhibit antitumoral properties in OS in vivo and affect the tumor microenvironment through the modulation of both chemokine expression and leukocyte infiltration. © 2008 Wiley-Liss, Inc. [source] Novel quinolone CHM-1 induces apoptosis and inhibits metastasis in a human osterogenic sarcoma cell lineJOURNAL OF ORTHOPAEDIC RESEARCH, Issue 12 2009Shu-Chun Hsu Abstract Novel 2-phenyl-4-quinolone compounds have potent cytotoxic effects on different human cancer cell lines. In this study, we examined anticancer activity and mechanisms of 20-fluoro-6,7-methylenedioxy-2-phenyl-4-quinolone (CHM-1) in human osterogenic sarcoma U-2 OS cells. CHM-1-induced apoptosis was determined by flow cytometric analysis, DAPI staining, Comet assay, and caspase inhibitors. CHM-1-inhibited cell migration and invasion was assessed by a wound healing assay, gelatin zymography, and a Transwell assay. The mechanisms of CHM-1 effects on apoptosis and metastasis signaling pathways were studied using Western blotting and gene expression. CHM-1 induced G2/M arrest and apoptosis at an IC50 (3 µM) in U-2 OS cells and caspase-3, -8, and -9 were activated. Caspase inhibitors increased cell viability after exposure to CHM-1. CHM-1-induced apoptosis was associated with enhanced ROS generation, DNA damage, decreased ,,m levels, and promotion of mitochondrial cytochrome c release. CHM-1 stimulated mRNA expression of caspase-3, -8, and -9, AIF, and Endo G. In addition, CHM-1 inhibited cell metastasis at a low concentration (<3 µM). CHM-1 inhibited the cell metastasis through the inhibition of MMP-2, -7, and -9. CHM-1 also decreased the levels of MAPK signaling pathways before leading to the inhibition of MMPs. In summary, CHM-1 is a potent inducer of apoptosis, which plays a role in the anticancer activity of CHM-1. © 2009 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 27:1637,1644, 2009 [source] Paclitaxel induces apoptosis via caspase-3 activation in human osteogenic sarcoma cells (U-2 OS)JOURNAL OF ORTHOPAEDIC RESEARCH, Issue 5 2005K.-H. Lu Abstract Paclitaxel has been found to exhibit cytotoxic and antitumor activity. There is little information regarding the mechanisms of apoptotic-inducing effect of paclitaxel on human osteogenic sarcoma U-2 OS cells. Several key regulatory proteins are involved in the initiation of apoptosis. Caspase-3 plays a direct role in proteolytic cleavage of cellular proteins responsible for progression to apoptosis. We examined the effect of paclitaxel on the cell cycle arrest and apoptosis in U-2 OS cells using flow cytometric analysis and Western blotting. We also measured the inhibition of paclitaxel-induced apoptosis and the caspase-3 activity by the broad-spectrum caspase inhibitor z-VAD-fmk on U-2 OS cells. The increased levels of casapse-3 were also confirmed by cDNA microarray. Our observations were: (1) paclitaxel treatment resulted in G2/M-cycle arrest in U-2 OS cells; (2) time and dose dependent apoptosis of U-2 OS cells was induced by paclitaxel; (3) in U-2 OS cells, z-VAD-fmk blocked the paclitaxel-induced apoptosis and caspase-3 activation. These results suggest that paclitaxel-induced G2/M-cycle arrest of the G2/M phase and apoptosis via a caspase-3 pathway in U-2 OS cells. © 2005 Orthopaedic Research Society. Published by Elsevier Ltd. All rights reserved. [source] Cloning and pharmacological characterization of the dog P2X7 receptorBRITISH JOURNAL OF PHARMACOLOGY, Issue 6 2009S Roman Background and purpose:, Human and rodent P2X7 receptors exhibit differences in their sensitivity to antagonists. In this study we have cloned and characterized the dog P2X7 receptor to determine if its antagonist sensitivity more closely resembles the human or rodent orthologues. Experimental approach:, A cDNA encoding the dog P2X7 receptor was isolated from a dog heart cDNA library, expressed in U-2 OS cells using the BacMam viral expression system and characterized in electrophysiological, ethidium accumulation and radioligand binding studies. Native P2X7 receptors were examined by measuring ATP-stimulated interleukin-1, release in dog and human whole blood. Key results:, The dog P2X7 receptor was 595 amino acids long and exhibited high homology (>70%) to the human and rodent orthologues although it contained an additional threonine at position 284 and an amino acid deletion at position 538. ATP possessed low millimolar potency at dog P2X7 receptors. 2,-&3,-O-(4benzoylbenzoyl) ATP had slightly higher potency but was a partial agonist. Dog P2X7 receptors possessed relatively high affinity for a number of selective antagonists of the human P2X7 receptor although there were some differences in potency between the species. Compound affinities in human and dog blood exhibited a similar rank order of potency as observed in studies on the recombinant receptor although absolute potency was considerably lower. Conclusions and implications:, Dog recombinant and native P2X7 receptors display a number of pharmacological similarities to the human P2X7 receptor. Thus, dog may be a suitable species for assessing target-related toxicity of antagonists intended for evaluation in the clinic. [source] |