Array Technology (array + technology)

Distribution by Scientific Domains
Distribution within Medical Sciences

Kinds of Array Technology

  • bead array technology


  • Selected Abstracts


    Targeting the allergen to oral dendritic cells with mucoadhesive chitosan particles enhances tolerance induction

    ALLERGY, Issue 7 2009
    N. Saint-Lu
    Background:, Sublingual immunotherapy (SLIT) efficacy could be improved by formulations facilitating allergen contact with the oral mucosa and uptake by antigen-presenting cells (APCs). Methods:, Two types of chitosan microparticles, differing in size and surface charge, were tested in vitro for their capacity to improve antigen uptake and presentation by murine bone marrow-derived dendritic cells (BMDCs) or purified oral APCs. T-cell priming in cervical lymph nodes (LNs) was assessed by intravenous transfer of carboxyfluorescein diacetate succinimidyl ester-labelled ovalbumin (OVA)-specific CD4+ T cells and flow cytometry analysis. Ovalbumin-sensitized BALB/c mice were treated sublingually with soluble or chitosan-formulated OVA twice a week for 2 months. Airway hyperresponsiveness (AHR), lung inflammation and T-cell responses in cervical and mediastinal LNs were assessed by whole-body plethysmography, lung histology and Cytometric Bead Array technology, respectively. Results:, Only a mucoadhesive (i.e. highly positively charged) and microparticulate form of chitosan enhances OVA uptake, processing and presentation by murine BMDCs and oral APCs. Targeting OVA to dendritic cells with this formulation increases specific T-cell proliferation and IFN-,/IL-10 secretion in vitro, as well as T-cell priming in cervical LNs in vivo. Sublingual administration of such chitosan-formulated OVA particles enhances tolerance induction in mice with established asthma, with a dramatic reduction of both AHR, lung inflammation, eosinophil numbers in bronchoalveolar lavages, as well as antigen-specific Th2 responses in mediastinal LNs. Conclusions:, Mucoadhesive chitosan microparticles represent a valid formulation for sublingual allergy vaccines. [source]


    DNA Microarray Experiments: Biological and Technological Aspects

    BIOMETRICS, Issue 4 2002
    Danh V. Nguyen
    Summary. DNA microarray technologies, such as cDNA and oligonucleotide microarrays, promise to revolutionize biological research and further our understanding of biological processes. Due to the complex nature and sheer amount of data produced from microarray experiments, biologists have sought the collaboration of experts in the analytical sciences, including statisticians, among others. However, the biological and technical intricacies of microarray experiments are not easily accessible to analytical experts. One aim for this review is to provide a bridge to some of the relevant biological and technical aspects involved in microarray experiments. While there is already a large literature on the broad applications of the technology, basic research on the technology itself and studies to understand process variation remain in their infancy. We emphasize the importance of basic research in DNA array technologies to improve the reliability of future experiments. [source]


    Environmental carcinogens and p53 tumor-suppressor gene interactions in a transgenic mouse model for mammary carcinogenesis

    ENVIRONMENTAL AND MOLECULAR MUTAGENESIS, Issue 2-3 2002
    Daniel Medina
    Abstract Mouse mammary tumorigenesis is greatly influenced by a variety of exogenous agents, such as MMTV, chemical carcinogens (i.e., polycyclic aromatic hydrocarbons), and radiation, as well as by endogenous/physiological factors, such as steroid hormones, tumor-suppressor genes (i.e., Brca1/2,p53), and gene products of modifier genes. In the mouse model, the most frequently used chemical carcinogen has been 7,12-dimethylbenz[a]anthracene (DMBA), which activates the Ha- ras gene but does not alter the p53 tumor-suppressor gene. However, on an existing background of p53 gene alteration, low doses of DMBA are strongly cocarcinogenic. Using a transgenic model system, in which the p53 gene was deleted in the mammary gland, we examined the carcinogenic effects of a variety of external agents and internal factors given at either low doses or physiological doses. These agents/factors included DMBA, ,-radiation, Brca2 heterozygosity, and steroid hormones. All agents/factors increased the tumorigenic response of the p53 null mammary cells, even under conditions where no tumorigenic response was observed in the p53 wildtype mammary cell. The strongest cocarcinogenic effect was observed with the steroid hormone progesterone. The majority of tumors were highly aneuploid and composed of nuclear igh-grade cells. The mechanism for the aneuploidy and secondary events associated with high tumorigenicity were examined using array technology. These results demonstrate that, on a background of underlying genetic instability, very low doses of environmental mutagens and mitogens can produce strong cocarcinogenic effects. Environ. Mol. Mutagen. 39:178,183, 2002. © 2002 Wiley-Liss, Inc. [source]


    Dynamics of marine bacterial and phytoplankton populations using multiplex liquid bead array technology

    ENVIRONMENTAL MICROBIOLOGY, Issue 4 2010
    Xavier Mayali
    Summary Heterotrophic bacteria and phytoplankton dominate the biomass and play major roles in the biogeochemical cycles of the surface ocean. Here, we designed and tested a fast, high-throughput and multiplexed hybridization-based assay to detect populations of marine heterotrophic bacteria and phytoplankton based on their small subunit ribosomal DNA sequences. The assay is based on established liquid bead array technology, an approach that is gaining acceptance in biomedical research but remains underutilized in ecology. End-labelled PCR products are hybridized to taxon-specific oligonucleotide probes attached to fluorescently coded beads followed by flow cytometric detection. We used ribosomal DNA environmental clone libraries (a total of 450 clones) and cultured isolates to design and test 26 bacterial and 10 eukaryotic probes specific to various ribotypes and genera of heterotrophic bacteria and eukaryotic phytoplankton. Pure environmental clones or cultures were used as controls and demonstrated specificity of the probes to their target taxa. The quantitative nature of the assay was demonstrated by a significant relationship between the number of target molecules and fluorescence signal. Clone library sequencing and bead array fluorescence from the same sample provided consistent results. We then applied the assay to a 37-day time series of coastal surface seawater samples from the Southern California Bight to examine the temporal dynamics of microbial communities on the scale of days to weeks. As expected, several bacterial phylotypes were positively correlated with total bacterial abundances and chlorophyll a concentrations, but others were negatively correlated. Bacterial taxa belonging to the same broad taxonomic groups did not necessarily correlate with one another, confirming recent results suggesting that inferring ecological role from broad taxonomic identity may not always be accurate. [source]


    Protein array technology to investigate cytokine production by monocytes from patients with advanced alcoholic cirrhosis: An ex vivo pilot study

    HEPATOLOGY RESEARCH, Issue 7 2009
    Khalid A. Tazi
    Aim:, In patients with advanced cirrhosis, little is known about the ability of peripheral blood monocytes to spontaneously produce signaling proteins such as cytokines. The aim of this ex vivo study was to evaluate cytokine production under baseline conditions and after stimulation by lipopolysaccharide (LPS), a toll-like receptor (TLR) agonist. Methods:, Peripheral blood monocytes were isolated from patients with advanced alcoholic cirrhosis (without ongoing bacterial infections) and normal subjects. Cells were left unstimulated or were stimulated with LPS. The abundance of 24 cytokines was measured using a filter-based, arrayed sandwich enzyme-linked immunosorbent assay (ELISA) in the supernatant of cultured monocytes. Results:, Cirrhotic monocytes spontaneously produced six proteins (TNF-,, IL-6, IL-8, MCP-1, RANTES and Gro), whereas normal monocytes produced only small amounts of IL-8 and RANTES. Analyses with the online gene set analysis toolkit WebGestalt (http://bioinfo.vanderbilt.edu/webgestalt) found enrichment for the six proteins in the human gene ontology subcategory (http://www.geneontology.org), Kyoto Encyclopedia of Genes and Genome pathways (http://www.genome.ad.jp/kegg/) and BioCarta pathways (http://www.biocarta.com/genes/index.asp) consistent with a proinflammatory phenotype of cirrhotic monocytes resulting from activated TLR signaling. Interestingly, LPS-elicited TLR engagement further increased the production of the six proteins and did not induce the secretion of any others, in particular the anti-inflammatory cytokine IL-10. LPS-stimulated normal monocytes produced TNF-,, IL-6, IL-8, MCP-1, RANTES, Gro and IL-10. Conclusion:, In patients with advanced cirrhosis, peripheral blood monocytes spontaneously produce proinflammatory cytokines, presumably in response to unrestricted TLR signaling. [source]


    Induced and repressed genes after irradiation sensitizing by pentoxyphylline,

    INTERNATIONAL JOURNAL OF CANCER, Issue 6 2007
    Waldemar Waldeck
    Abstract Aim in cancer therapy is to increase the therapeutic ratio eliminating the disease while minimizing toxicity to normal tissues. Radiation therapy is a main component in targeting cancer. Radiosensitizing agents like pentoxyphylline (PTX) have been evaluated to improve radiotherapy. Commonly, cells respond to radiation by the activation of specific early and late response genes as well as by inhibition of genes, which are expressed under normal conditions. A display of the genetic distinctions at the level of transcription is given here to characterize the molecular events underlying the radiosensitizing mechanisms. The method of suppression subtractive hybridization allows the visualization of both induced and repressed genes in irradiated cells compared with cells sensitized immediately after irradiation. The genes were isolated by cDNA-cloning, differential analysis and sequence similarity search. Genes involved in protein synthesis, metabolism, proteolysis and transcriptional regulation were detected. It is important that genes like KIAA280, which were only known as unidentified EST sequences before without function, but inaccessible by array technology were recovered as functional genes. Database searches for PTX-induced genes detected a human mRNA completely unknown. In case of suppressed genes, we detected several mRNAs; one thereof shows homology to a hypothetical protein possibly involved in signal transduction. A further mRNA encodes the protein BM036 supposed to associate with the E2F transcription factor. A hypothetical protein H41 was detected, which may repress the Her-2/neu receptor influencing breast cancer, gliomas and prostate tumors. Radiation combined with PTX may lead to a better prognosis by down regulation of the Her-2/neu, which will be proven by clinical studies in the near future. © 2006 Wiley-Liss, Inc. [source]


    Oncoproteomics of hepatocellular carcinoma: from cancer markers' discovery to functional pathways

    LIVER INTERNATIONAL, Issue 8 2007
    Stella Sun
    Abstract Hepatocellular carcinoma (HCC) is a heterogeneous cancer with no promising treatment and remains one of the most prevailing and lethal malignancies in the world. Researchers in many biological areas now routinely identify and characterize protein markers by a mass spectrometry-based proteomic approach, a method that has been commonly used to discover diagnostic biomarkers for cancer detection. The proteomic research platforms span from the classical two-dimensional polyacrylamide gel electrophoresis (2-DE) to the latest Protein Chip or array technology, which are often integrated with the MALDI (matrix-assisted laser-desorption ionization), SELDI (surface-enhanced laser desorption/ionization) or tandem mass spectrometry (MS/MS). New advances on quantitative proteomic analysis (e.g. SILAC, ICAT, and ITRAQ) and multidimensional protein identification technology (MudPIT) have greatly enhanced the capability of proteomic methods to study the expressions, modifications and functions of protein markers. The present article reviews the latest proteomic development and discovery of biomarkers in HCC that may provide insights into the underlying mechanisms of hepatocarcinogenesis and the readiness of biomarkers for clinical uses. [source]


    Differential expression of insulin-like growth factor binding protein-5 in pancreatic adenocarcinomas: Identification using DNA microarray

    MOLECULAR CARCINOGENESIS, Issue 11 2006
    Sarah K. Johnson
    Abstract Pancreatic ductal adenocarcinoma (PDAC) is characterized by its aggressiveness and resistance to both radiation and chemotherapeutic treatment. To better understand the molecular pathogenesis of pancreatic cancer, DNA array technology was employed to identify genes differentially expressed in pancreatic tumors when compared to non-malignant pancreatic tissues. RNA isolated from 11 PDACs and 14 non-malignant bulk pancreatic duct specimens was used to probe Affymetrix U95A DNA arrays. Genes that displayed at least a fourfold differential expression were identified and real-time quantitative PCR was used to verify the differential expression of selected upregulated genes. Interrogation of the DNA array revealed that 73 genes were upregulated in PDACs and 77 genes were downregulated. The majority of the 150 genes identified have not been previously reported to be differentially expressed in pancreatic tumors, although a number of the upregulated transcripts have been reported previously. Immunohistochemistry was used to correlate calponin and insulin-like growth factor binding protein-5 (IGFBP-5) RNA levels with protein expression in PDACs and revealed peritumoral calponin staining in the reactive stroma and intense focal staining of islets cells expressing IGFBP-5 at the edge of tumors; thus implicating the interplay of various cell types to promote neoplastic cell growth within pancreatic carcinomas. As a potential modulator of cell proliferation, the overexpression of IGFBP-5 may, therefore, play a significant role in the malignant transformation of normal pancreatic epithelial cells. © 2006 Wiley-Liss, Inc. [source]


    Molecular fingerprinting of TGFß-treated embryonic maxillary mesenchymal cells

    ORTHODONTICS & CRANIOFACIAL RESEARCH, Issue 4 2003
    M.M. Pisano
    Abstract The transforming growth factor-ß (TGFß) family represents a class of signaling molecules that plays a central role in normal embryonic development, specifically in development of the craniofacial region. Members of this family are vital to development of the secondary palate where they regulate maxillary and palate mesenchymal cell proliferation and extracellular matrix synthesis. The function of this growth factor family is particularly critical in that perturbation of either process results in a cleft of the palate. While the cellular and phenotypic effects of TGFß on embryonic craniofacial tissue have been extensively cataloged, the specific genes that function as downstream mediators of TGFß in maxillary/palatal development are poorly defined. Gene expression arrays offer the ability to conduct a rapid, simultaneous assessment of hundreds to thousands of differentially expressed genes in a single study. Inasmuch as the downstream sequelae of TGFß action are only partially defined, a complementary DNA (cDNA) expression array technology (Clontech's AtlasTM Mouse cDNA Expression Arrays), was utilized to delineate a profile of differentially expressed genes from TGFß-treated primary cultures of murine embryonic maxillary mesenchymal cells. Hybridization of a membrane-based cDNA array (1178 genes) was performed with 32P-labeled cDNA probes synthesized from RNA isolated from either TGFß-treated or vehicle-treated embryonic maxillary mesenchymal cells. Resultant phosphorimages were subject to AtlasImageTM analysis in order to determine differences in gene expression between control and TGFß-treated maxillary mesenchymal cells. Of the 1178 arrayed genes, 552 (47%) demonstrated detectable levels of expression. Steady state levels of 22 genes were up-regulated, while those of 8 other genes were down-regulated, by a factor of twofold or greater in response to TGFß. Affected genes could be grouped into three general functional categories: transcription factors and general DNA-binding proteins; growth factors/signaling molecules; and extracellular matrix and related proteins. The extent of hybridization of each gene was evaluated by comparison with the abundant, constitutively expressed mRNAs: ubiquitin, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), ornithine decarboxylase (ODC), cytoplasmic beta-actin and 40S ribosomal protein. No detectable changes were observed in the expression levels of these genes in response to TGFß treatment. Gene expression profiling results were verified by Real-Time quantitative polymerase chain reaction. Utilization of cDNA microarray technology has enabled us to delineate a preliminary transcriptional map of TGFß responsiveness in embryonic maxillary mesenchymal cells. The profile of differentially expressed genes offers revealing insights into potential molecular regulatory mechanisms employed by TGFß in orchestrating craniofacial ontogeny. [source]


    Downregulation of pro-inflammatory cytokines by lupeol measured using cytometric bead array immunoassay

    PHYTOTHERAPY RESEARCH, Issue 1 2010
    Sheikh Fayaz Ahmad
    Abstract The objective of the study was to investigate the activity of Lupeol (LUP) on proinflammatory and anti-inflammatory cytokines in the pleural exudate from male swiss albino mice. We applied Cytometric bead array technology for simultaneously measurement of these cytokines in pleurisy induced mice treated with lupeol in graded oral doses. Cytometric bead array uses the sensitivity of amplified fluorescence detection by flowcytometer to measure soluble analytes in a particle based immune assay. This assay can accurately quantitate 5 cytokines in a 50 microlitre sample volume. Oral administration of LUP at doses of 25, 50, 100 and 200 mg/kg p.o. produced dose related inhibition of IL-2, IFN-gamma and TNF- , in the pleural exudate with the most significant effect at 100 mg/kg oral dose. LUP had a non significant inhibitory effect on the levels of IL-4 and IL-5. Copyright © 2009 John Wiley & Sons, Ltd. [source]


    Addressing the effects of Salmonella internalization in host cell signaling on a reverse-phase protein array

    PROTEINS: STRUCTURE, FUNCTION AND BIOINFORMATICS, Issue 14 2009
    Cristina Molero
    Abstract Through acute enteric infection, Salmonella invades host enterocytes and reproduces intracellularly into specialized vacuolae. This involves changes in host cell signaling elicited by bacterial proteins delivered via type III secretion systems (TTSS). One of the two TTSSs of Salmonella enterica serovar Typhimurium encoded by the Salmonella pathogenicity island-1, triggers bacterial internalization. Among the effector proteins translocated by this TTSS, the GTPase modulator SopE/E2 and the phosphoinositide phosphatase SigD are known to play key roles in these processes. To better understand their contribution to re-programming host cell pathways, we used ZeptoMARK reverse-phase protein array technology, which allows printing 32-sample lysate arrays that can be analyzed with phospho-specific antibodies to evaluate the phosphorylation of signaling proteins. Lysates were obtained at different times after infection of HeLa cells with WT, TTSS-deficient, sopE/E2 and sigD single and double deletants, as well as different sigD Salmonella mutants. Our analysis detected activation of p38, JNK and ERK mitogen-activated protein kinases, mainly dependent on SopE/E2, as well as SigD-dependent phosphorylation of PKB/Akt and its targets GSK-3, and FKHR/FoxO. This is the first time that reverse-phase protein array technology is used in the cellular microbiology field, demonstrating its value to screen for host signaling events through bacterial infection. [source]


    Signal pathway profiling of prostate cancer using reverse phase protein arrays

    PROTEINS: STRUCTURE, FUNCTION AND BIOINFORMATICS, Issue 11 2003
    Robert L. Grubb
    Abstract Reverse phase protein arrays represent a new proteomics microarray technology with which to study the fluctuating state of the proteome in minute quantities of cells. The activation status of cell signaling pathways controls cellular fate and deregulation of these pathways underpins carcinogenesis. Changes in pathway activation that occur between early stage prostatic epithelial lesions, prostatic stroma and the extracellular matrix can be analyzed by obtaining pure populations of cell types by laser capture microdissection (LCM) and analyzing the relative states of several key phosphorylation points within the cellular circuitry. We have applied reverse phase protein array technology to analyze the status of key points in cell signaling involved in pro-survival, mitogenic, apoptotic and growth regulation pathways in the progression from normal prostate epithelium to invasive prostate cancer. Using multiplexed reverse phase protein arrays coupled with LCM, the states of signaling changes during disease progression from prostate cancer study sets were analyzed. Focused analysis of phospho-specific endpoints revealed changes in cellular signaling events through disease progression and between patients. We have used a new protein array technology to study specific molecular pathways believed to be important in cell survival and progression from normal epithelium to invasive carcinoma directly from human tissue specimens. With the advent of molecular targeted therapeutics, the identification, characterization and monitoring of the signaling events within actual human biopsies will be critical for patient-tailored therapy. [source]


    Remnants of secondarily necrotic cells fuel inflammation in systemic lupus erythematosus

    ARTHRITIS & RHEUMATISM, Issue 6 2009
    Luis E. Muñoz
    Objective Patients with systemic lupus erythematosus (SLE) are often characterized by cellular as well as humoral deficiencies in the recognition and phagocytosis of dead and dying cells. The aim of this study was to investigate whether the remnants of apoptotic cells are involved in the induction of inflammatory cytokines in blood-borne phagocytes. Methods We used ex vivo phagocytosis assays comprising cellular and humoral components and phagocytosis assays with isolated granulocytes and monocytes to study the phagocytosis of secondarily necrotic cell,derived material (SNEC). Cytokines were measured by multiplex bead array technology. Results We confirmed the impaired uptake of various particulate targets, including immunoglobulin-opsonized beads, by granulocytes and monocytes from patients with SLE compared with healthy control subjects. Surprisingly, blood-borne phagocytes from two-thirds of the patients with SLE took up SNEC, which was rarely phagocytosed by phagocytes from healthy control subjects or patients with rheumatoid arthritis. Supplementation of healthy donor blood with IgG fractions derived from patients with SLE transferred the capability to take up SNEC to the phagocytes of healthy donors. Phagocytosis-promoting immune globulins also induced secretion of huge amounts of cytokines by blood-borne phagocytes following uptake of SNEC. Conclusion Opsonization of SNEC by autoantibodies from patients with SLE fosters its uptake by blood-borne monocytes and granulocytes. Autoantibody-mediated phagocytosis of SNEC is accompanied by secretion of inflammatory cytokines, fueling the inflammation that contributes to the perpetuation of autoimmunity in SLE. [source]


    Cartilage-like gene expression in differentiated human stem cell spheroids: A comparison of bone marrow,derived and adipose tissue,derived stromal cells

    ARTHRITIS & RHEUMATISM, Issue 2 2003
    Anja Winter
    Objective To compare the chondrogenic potential of human bone marrow,derived mesenchymal stem cells (BMSC) and adipose tissue,derived stromal cells (ATSC), because the availability of an unlimited cell source replacing human chondrocytes could be strongly beneficial for cell therapy, tissue engineering, in vitro drug screening, and development of new therapeutic options to enhance the regenerative capacity of human cartilage. Methods Quantitative gene expression of common cartilage and cell interaction molecules was analyzed using complementary DNA array technology and reverse transcription,polymerase chain reaction during optimization of cell differentiation, in order to achieve a molecular phenotype similar to that of chondrocytes in cartilage. Results The multilineage potential of BMSC and ATSC was similar according to cell morphology and histology, but minor differences in marker gene expression occurred in diverse differentiation pathways. Although chondrogenic differentiation of BMSC and ATSC was indistinguishable in monolayer and remained partial, only BMSC responded (with improved chondrogenesis) to a shift to high-density 3-dimensional cell culture, and reached a gene expression profile highly homologous to that of osteoarthritic (OA) cartilage. Conclusion Hypertrophy of chondrocytes and high matrix-remodeling activity in differentiated BMSC spheroids and in OA cartilage may be the basis for the strong similarities in gene expression profiles between these samples. Differentiated stem cell spheroids represent an attractive tool for use in drug development and identification of drug targets in OA cartilage,like tissue outside the human body. However, optimization of differentiation protocols to achieve the phenotype of healthy chondrocytes is desired for cell therapy and tissue engineering approaches. [source]