Organotypic Hippocampal Slice Cultures (organotypic + hippocampal_slice_culture)

Distribution by Scientific Domains


Selected Abstracts


7-Hydroxylated epiandrosterone (7-OH-EPIA) reduces ischaemia-induced neuronal damage both in vivo and in vitro

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 1 2003
Ashley K. Pringle
Abstract Recent evidence suggests that steroids such as oestradiol reduce ischaemia-induced neurodegeneration in both in vitro and in vivo models. A cytochrome P450 enzyme termed cyp7b that 7-hydroxylates many steroids is expressed at high levels in brain, although the role of 7-hydroxylated steroids is unknown. We have tested the hypothesis that the steroid-mediated neuroprotection is dependent on the formation of 7-hydroxy metabolites. Organotypic hippocampal slice cultures were prepared from Wistar rat pups and maintained in vitro for 14 days. Cultures were then exposed to 3 h hypoxia and neuronal damage assessed 24 h later using propidium iodide fluorescence as a marker of cell damage. Neurodegeneration occurred primarily in the CA1 pyramidal cell layer. The steroids oestradiol, dehydroepiandrosterone and epiandrosterone (EPIA) were devoid of neuroprotective efficacy when present at 100 nm pre-, during and post-hypoxia. The 7-hydroxy metabolites of EPIA, 7,-OH-EPIA and 7,-OH-EPIA significantly reduced neurotoxicity at 100 nm and 10 nm. 7,-OH-EPIA was also neuroprotective in two in vivo rat models of cerebral ischaemia: 0.1 mg/kg 7,-OH-EPIA significantly reduced hippocampal cell loss in a model of global forebrain ischaemia, whereas 0.03 mg/kg was neuroprotective in a model of focal ischaemia even when administration was delayed until 6 h after the onset of ischaemia. Taken together, these data demonstrate that 7-hydroxylation of steroids confers neuroprotective efficacy, and that 7,-OH-epiandrosterone represents a novel class of neuroprotective compounds with potential for use in acute neurodegenerative diseases. [source]


Inverse relationship between seizure expression and extrasynaptic NMDAR function following chronic NMDAR inhibition

EPILEPSIA, Issue 2010
Suzanne B. Bausch
Summary We showed previously that electrographic seizures involving dentate granule cells in organotypic hippocampal slice cultures were dramatically reduced following chronic treatment with the NR2B-selective antagonist, Ro25,6981, but were increased following chronic treatment with the high-affinity competitive antagonist, D(-)-2-amino-5-phosphonopentanoic acid (D-APV). To begin to investigate the potential mechanisms underlying the differential effects of N -methyl- d -aspartate receptor (NMDAR) antagonists on seizures, electrophysiologic experiments were conducted in dentate granule cells in hippocampal slice cultures treated for the entire 17,21 day culture period with vehicle, Ro25,6981 or D-APV. Initial experiments revealed a lack of an association between miniature excitatory postsynaptic current (mEPSC) measures and seizures suggesting that shifts in mEPSC were unlikely to account for the differential effects of D-APV and Ro25,6981 on seizures. However, the amplitude of tonic NMDAR-mediated currents was reduced in cultures treated chronically with D-APV and dramatically enhanced in cultures treated chronically with Ro25,6981. Because tonic NMDAR currents are mediated primarily by extrasynaptic NMDAR, these data show an inverse relationship between changes in extrasynaptic NMDAR function and alterations in seizure expression. [source]


Neutralization of the membrane protein Nogo-A enhances growth and reactive sprouting in established organotypic hippocampal slice cultures

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 9 2008
Luis M. Craveiro
Abstract The reduced ability of central axons to regenerate after injury is significantly influenced by the presence of several molecules that inhibit axonal growth. Nogo-A is one of the most studied and most potent of the myelin-associated growth inhibitory molecules. Its neutralization, as well as interference with its signalling, allows for enhanced axonal sprouting and growth following injury. Using differentiated rat organotypic hippocampal slice cultures treated for 5 days with either of two different function-blocking anti-Nogo-A antibodies, we show an increase in CA3 fibre regeneration after lesion. In intact slices, 5 days of anti-Nogo-A antibody treatment led to increased sprouting of intact CA3 fibres that are positive for neurofilament 68. A transcriptomic approach confirmed the occurrence of a growth response on the molecular level upon Nogo-A neutralization in intact cultures. Our results demonstrate that Nogo-A neutralization for 5 days is sufficient for the induction of growth in mature CNS tissue without the prerequisite of an injury. Nogo-A may therefore act as a tonic growth suppressor/stabilizer in the adult intact hippocampus. [source]


Long-term depression activates transcription of immediate early transcription factor genes: involvement of serum response factor/Elk-1

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 2 2006
Antje Lindecke
Abstract Long-term depression (LTD) is one of the paradigms used in vivo or ex vivo for studying memory formation. In order to identify genes with potential relevance for memory formation we used mouse organotypic hippocampal slice cultures in which chemical LTD was induced by applications of 3,5-dihydroxyphenylglycine (DHPG). The induction of chemical LTD was robust, as monitored electrophysiologically. Gene expression analysis after chemical LTD induction was performed using cDNA microarrays containing >7000 probes. The DHPG-induced expression of immediate early genes (c-fos, junB, egr1 and nr4a1) was subsequently verified by TaqMan polymerase chain reaction. Bioinformatic analysis suggested a common regulator element [serum response factor (SRF)/Elk-1 binding sites] within the promoter region of these genes. Indeed, here we could show a DHPG-dependent binding of SRF at the SRF response element (SRE) site within the promoter region of c-fos and junB. However, SRF binding to egr1 promoter sites was constitutive. The phosphorylation of the ternary complex factor Elk-1 and its localization in the nucleus of hippocampal neurones after DHPG treatment was shown by immunofluorescence using a phosphospecific antibody. We suggest that LTD leads to SRF/Elk-1-regulated gene expression of immediate early transcription factors, which could in turn promote a second broader wave of gene expression. [source]


Astrocytic factors protect neuronal integrity and reduce microglial activation in an in vitro model of N -methyl- d -aspartate-induced excitotoxic injury in organotypic hippocampal slice cultures

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 2 2001
Nils P. Hailer
Abstract Acute CNS lesions lead to neuronal injury and a parallel glial activation that is accompanied by the release of neurotoxic substances. The extent of the original neuronal damage can therefore be potentiated in a process called secondary damage. As astrocytes are known to secrete immunomodulatory and neuroprotective substances, we investigated whether astrocytic factors can attenuate the amount of neuronal injury as well as the degree of microglial activation in a model of excitotoxic neurodegeneration. Treatment of organotypic hippocampal slice cultures with N-methyl- d -aspartate (NMDA) resulted in a reproducible loss of viable granule cells, partial destruction of the regular hippocampal cytoarchitecture and a concomitant accumulation of amoeboid microglial cells at sites of neuronal damage. Astrocyte-conditioned media reduced the amount of NMDA-induced neuronal injury by 45.3%, diminished the degree of microglial activation and resulted in an improved preservation of the hippocampal cytoarchitecture. Transforming growth factor (TGF)-, failed to act as a neuroprotectant and even enhanced the amount of neuronal injury by 52.5%. Direct effects of astrocytic factors on isolated microglial cells consisted of increased microglial ramification and down-regulated expression of intercellular adhesion molecule-1, whereas incubation with TGF-, had no such effects. In summary, our findings show that hitherto unidentified astrocyte-derived factors that are probably not identical with TGF-, can substantially enhance neuronal survival, either by eliciting direct neuroprotective effects or by modulating the microglial response to neuronal injury. [source]


Reducing conditions significantly attenuate the neuroprotective efficacy of competitive, but not other NMDA receptor antagonists in vitro

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 11 2000
Ashley K. Pringle
Abstract Inappropriate activation of NMDA receptors during a period of cerebral ischaemia is a crucial event in the pathway leading to neuronal degeneration. However, significant research has failed to deliver a clinically active NMDA receptor antagonist, and competitive NMDA antagonists are ineffective in many experimental models of ischaemia. The NMDA receptor itself has a number of modulatory sites which may affect receptor function under ischaemic conditions. Using rat organotypic hippocampal slice cultures we have investigated whether the redox modulatory site affects the neuroprotective efficacy of NMDA receptor antagonists against excitotoxicity and experimental ischaemia (OGD). NMDA toxicity was significantly enhanced in cultures pretreated with a reducing agent. The noncompetitive antagonist MK-801 and a glycine-site blocker were equally neuroprotective in both normal and reduced conditions, but there was a significant rightward shift in the dose,response curves of the competitive antagonists APV and CPP and the uncompetitive antagonist memantine. OGD produced neuronal damage predominantly in the CA1 region, which was prevented by MK-801 and memantine, but not by APV or CPP. Inclusion of an oxidizing agent during the period of OGD had no effect alone, but significantly enhanced the neuroprotective potency of the competitive antagonists. These data clearly demonstrate that chemical reduction of the redox modulatory site of the NMDA receptor decreases the ability of competitive antagonists to block NMDA receptor-mediated neuronal damage, and that the reducing conditions which occur during simulated ischaemia are sufficient to produce a similar effect. This may have important implications for the design of future neuroprotective agents. [source]


The immunosuppressant mycophenolate mofetil improves preservation of the perforant path in organotypic hippocampal slice cultures: A retrograde tracing study

HIPPOCAMPUS, Issue 5 2006
Tilman M. Oest
Abstract Previous studies with excitotoxically lesioned organotypic hippocampal slice cultures (OHSC) have revealed that the immunosuppressant mycophenolate mofetil (MMF) inhibits microglial activation and suppresses neuronal injury in the dentate gyrus. We here investigate whether MMF also has beneficial effects on axon survival in a long-range projection, the perforant path. Complex OHSC including the entorhinal cortex were obtained from Wistar rats (p8); the plane of section ensuring that perforant path integrity was preserved. These preparations were cultured for 9 days in vitro with or without MMF (100 ,g/ml). After fixation, the perforant path was retrogradely labeled by application of the fluorescent dye DiI (1,1,-dioctadecyl-3,3,3,,3,-tetramethylindo-carbocyanine) in the hilus of the dentate gyrus, and neuronal perikarya were immunohistochemically stained by the neuron-specific marker NeuN. Analysis of DiI-labeled and NeuN-stained OHSC by confocal laser scanning microscopy revealed double-labeled neurons in the entorhinal cortex, which projected to the dentate gyrus via the perforant path. Quantitative analysis showed that the number of these double-labeled neurons was 19-fold higher in OHSC treated with MMF than in control cultures (P < 0.05). Our findings indicate that MMF treatment improves preservation of the perforant path and encourage further studies on development and regeneration of long-range projections under the influence of immunosuppressants. © 2006 Wiley-Liss, Inc. [source]


Behavior of hippocampal stem/progenitor cells following grafting into the injured aged hippocampus

JOURNAL OF NEUROSCIENCE RESEARCH, Issue 14 2008
Ashok K. Shetty
Abstract Multipotent neural stem/progenitor cells (NSCs) from the embryonic hippocampus are potentially useful as donor cells to repopulate the degenerated regions of the aged hippocampus after stroke, epilepsy, or Alzheimer's disease. However, the efficacy of the NSC grafting strategy for repairing the injured aged hippocampus is unknown. To address this issue, we expanded FGF-2-responsive NSCs from the hippocampus of embryonic day 14 green fluorescent protein,expressing transgenic mice as neurospheres in vitro and grafted them into the hippocampus of 24-month-old F344 rats 4 days after CA3 region injury. Engraftment, migration, and neuronal/glial differentiation of cells derived from NSCs were analyzed 1 month after grafting. Differentiation of neurospheres in culture dishes or after placement on organotypic hippocampal slice cultures demonstrated that these cells had the ability to generate considerable numbers of neurons, astrocytes, and oligodendrocytes. Following grafting into the injured aged hippocampus, cells derived from neurospheres survived and dispersed, but exhibited no directed migration into degenerated or intact hippocampal cell layers. Phenotypic analyses of graft-derived cells revealed neuronal differentiation in 3%,5% of cells, astrocytic differentiation in 28% of cells, and oligodendrocytic differentiation in 6%,10% cells. The results demonstrate for the first time that NSCs derived from the fetal hippocampus survive and give rise to all three CNS phenotypes following transplantation into the injured aged hippocampus. However, grafted NSCs do not exhibit directed migration into lesioned areas or widespread neuronal differentiation, suggesting that direct grafting of primitive NSCs is not adequate for repair of the injured aged brain without priming the microenvironment. © 2008 Wiley-Liss, Inc. [source]