Home About us Contact | |||
Organismal Response (organismal + response)
Selected AbstractsMSH2 deficiency abolishes the anticancer and pro-aging activity of short telomeresAGING CELL, Issue 1 2009Paula Martinez Summary Mutations in the mismatch repair (MMR) pathway occur in human colorectal cancers with microsatellite instability. Mounting evidence suggests that cell-cycle arrest in response to a number of cellular stresses, including telomere shortening, is a potent anticancer barrier. The telomerase-deficient mouse model illustrates the anticancer effect of cell-cycle arrest provoked by short telomeres. Here, we describe a role for the MMR protein, MSH2, in signaling cell-cycle arrest in a p21/p53-dependent manner in response to short telomeres in the context of telomerase-deficient mice. In particular, progressively shorter telomeres at successive generations of MSH2,/,Terc,/,- mice did not suppress cancer in these mice, indicating that MSH2 deficiency abolishes the tumor suppressor activity of short telomeres. Interestingly, MSH2 deficiency prevented degenerative pathologies in the gastrointestinal tract of MSH2,/,Terc,/, mice concomitant with a rescue of proliferative defects. The abolishment of the anticancer and pro-aging effects of short telomeres provoked by MSH2 abrogation was independent of changes in telomere length. These results highlight a role for MSH2 in the organismal response to dysfunctional telomeres, which in turn may be important in the pathobiology of human cancers bearing mutations in the MMR pathway. [source] Non-parametric habitat models with automatic interactionsJOURNAL OF VEGETATION SCIENCE, Issue 6 2006Bruce McCune Abstract Questions: Can a statistical model be designed to represent more directly the nature of organismal response to multiple interacting factors? Can multiplicative kernel smoothers be used for this purpose? What advantages does this approach have over more traditional habitat modelling methods? Methods: Non-parametric multiplicative regression (NPMR) was developed from the premises that: the response variable has a minimum of zero and a physiologically-determined maximum, species respond simultaneously to multiple ecological factors, the response to any one factor is conditioned by the values of other factors, and that if any of the factors is intolerable then the response is zero. Key features of NPMR are interactive effects of predictors, no need to specify an overall model form in advance, and built-in controls on overfitting. The effectiveness of the method is demonstrated with simulated and real data sets. Results: Empirical and theoretical relationships of species response to multiple interacting predictors can be represented effectively by multiplicative kernel smoothers. NPMR allows us to abandon simplistic assumptions about overall model form, while embracing the ecological truism that habitat factors interact. [source] p53/CEP-1 increases or decreases lifespan, depending on level of mitochondrial bioenergetic stressAGING CELL, Issue 4 2009Natascia Ventura Summary Mitochondrial pathologies underlie a number of life-shortening diseases in humans. In the nematode Caenorhabditis elegans, severely reduced expression of mitochondrial proteins involved in electron transport chain-mediated energy production also leads to pathological phenotypes, including arrested development and/or shorter life; in sharp contrast, mild suppression of these same proteins extends lifespan. In this study, we show that the C. elegans p53 ortholog cep-1 mediates these opposite effects. We found that cep-1 is required to extend longevity in response to mild suppression of several bioenergetically relevant mitochondrial proteins, including frataxin , the protein defective in patients with Friedreich's Ataxia. Importantly, we show that cep-1 also mediates both the developmental arrest and life shortening induced by severe mitochondrial stress. These findings support an evolutionarily conserved function for p53 in modulating organismal responses to mitochondrial dysfunction and suggest that metabolic checkpoint responses may play a role in longevity control and in human mitochondrial-associated diseases. [source] Not just vicariance: phylogeography of a Sonoran Desert euphorb indicates a major role of range expansion along the Baja peninsulaMOLECULAR ECOLOGY, Issue 9 2009R. C. GARRICK Abstract To examine the generality of population-level impacts of ancient vicariance identified for numerous arid-adapted animal taxa along the Baja peninsula, we tested phylogeographical hypotheses in a similarly distributed desert plant, Euphorbia lomelii (Euphorbiaceae). In light of fossil data indicating marked changes in the distributions of Baja floristic assemblages throughout the Holocene and earlier, we also examined evidence for range expansion over more recent temporal scales. Two classes of complementary analytical approaches , hypothesis-testing and hypothesis-generating , were used to exploit phylogeographical signal from chloroplast DNA sequence data and genotypic data from six codominant nuclear intron markers. Sequence data are consistent with a scenario of mid-peninsular vicariance originating c. 1 million years ago (Ma). Alternative vicariance scenarios representing earlier splitting events inferred for some animals (e.g. Isthmus of La Paz inundation, c. 3 Ma; Sea of Cortez formation, c. 5 Ma) were rejected. Nested clade phylo-geographical analysis corroborated coalescent simulation-based inferences. Nuclear markers broadened the temporal spectrum over which phylogeographical scenarios could be addressed, and provided strong evidence for recent range expansions along the north,south axis of the Baja peninsula. In contrast to previous plant studies in this region, however, the expansions do not appear to have been in a strictly northward direction. These findings contribute to a growing appreciation of the complexity of organismal responses to past climatic and geological changes , even when taxa have evolved in the same landscape context. [source] |