Home About us Contact | |||
Organic Matter Content (organic + matter_content)
Kinds of Organic Matter Content Selected AbstractsThe Isiokpo Oil-Pipeline Leakage: Total Organic Carbon/Organic Matter Contents of Affected SoilsCHEMISTRY & BIODIVERSITY, Issue 8 2005The environmental impact of the 1997 leakage of the high-pressure crude-oil pipeline at Isiokpo in the Niger Delta in the southeast of Nigeria was evaluated, with particular reference to total-organic-carbon (TOC) and total-organic-matter (TOM) contents of soils within the vicinity of the oil spillage. The soils, taken from depths of 0,15,cm (surface) and 15,30,cm (subsurface), were found to be more acidic (pH,4.2,5.6) than the unpolluted soils, with a high average moisture content of 6.8%. The extractable hydrocarbon content ranged from 2.71,3.48,mg/kg, indicating hydrocarbon contamination. However, contrary to expectation, the TOC and TOM contents of the polluted soils did not show any significant increase in concentration, supposedly due to natural rehabilitation of the affected mat layer of soils. Thus, notwithstanding the possible proliferation of heterotrophic organisms by the presence of the added petroleum hydrocarbons, environmental conditions such as weathering and climatic predispositions, as well as physico-chemical parameters such as pH, moisture content, and temperature must have encumbered the carbon-mineralizing capacity of the heterotrophs, thereby reducing the turnover of carbon and the decomposition of organic matter. The restrictions by high moisture content might not come directly from H2O itself, but are probably a consequence of hindered soil ventilation, which reduces O2 supply and gaseous diffusion, conditions that might have been substantially aggravated by the added petroleum hydrocarbons. [source] Effects of field reorganisation on the spatial variability of runoff and erosion rates in vineyards of Northeastern SpainLAND DEGRADATION AND DEVELOPMENT, Issue 1 2010M. C. Ramos Abstract This study analyses the spatial variability of runoff and erosion rates in vineyards due to mechanisation works. Runoff samples were collected at three positions in two plots after 33 erosive events in three years (2001, 2003, 2004) with different rainfall patterns. Three replications were considered at each position. Soil properties were evaluated in order to analyse its relationship with runoff and erosion rates. Runoff and erosion rates were, on average, higher in the levelled plot (HD), ranging between 8·4 and 34·3 per cent, than in the non-levelled plot (LD) ranging between 8·2 and 24·1 per cent. Mean sediment concentration in runoff ranged between 6 and 8,g,L,1 in the HD plot and about 4·6,g,L,1 in the LD plot, but with high differences within the plot. In the HD plot, runoff-rainfall rates were significantly higher (at 95 per cent level) in the upper part of the slope and decreased along the slope, while in the LD plot, differences in runoff rates were not significant and similar to those observed in the less disturbed areas of the HD plot. The higher susceptibility to soil sealing in areas where the original topsoil was removed conditioned runoff rates. In the lower part of the HD plot runoff rates were, on average, 20 per cent lower than in the upper part of the slope. In those positions runoff rates up to 79 per cent were recorded. Organic matter content and water retention capacity at different potentials are the soil characteristics related to the differences on runoff and erosion rates in the resulting soils. Copyright © 2009 John Wiley & Sons, Ltd. [source] The contribution of stone cover to biological activity in the Negev desert, IsraelLAND DEGRADATION AND DEVELOPMENT, Issue 1 2001I. Lahav (Lavian) Abstract Ancient valley agriculture in the northern Negev highlands was based on the principle of directed collection of water and eroded material from the slopes and their consequent flow towards the valleys. The stones on these slopes were therefore removed and/or collected into piles known as ,grape mounds'. The aim of this study was to understand the contribution of stone cover and slope-facing to biological activity in soil. Soil samples from a depth of 0,5,mm from the soil surface were collected during the study period (December 1994,March 1996) from northern and southern hill slopes, from under limestones and between stones. Soil moisture, organic matter, chlorophyll-a and soil respiration were determined. The results obtained in field and laboratory studies demonstrated differences between the northern and southern slopes. The stone cover on the northern slope made up 33 per cent and in the southern slope 23 per cent, stone size ranging from 15,50,cm2 and 15,35,cm2, respectively. Soil moisture content varied from 12 per cent in December 1994 on both slopes to one-quarter of the initial value during the dry period. Organic matter content reached a maximal level of 14 per cent and 16 per cent on the northern and southern slopes, respectively. Values of chlorophyll-a on both the northern and southern slopes were 0.38,,g,g,1 dry soil during the wet season, decreasing to 0.05,,g,g,1 dry soil during the dry period. Soil samples from under the stones on both slopes produced high levels of CO2, ranging between 50 and 100,,g CO2,g;,1 dry soil h,1, whereas in the control samples the levels ranged between 30 and 70,,g CO2,g,1 dry soil h,1. In conclusion, the stone cover apparently plays an important role in the maintenance of biological activity through its contribution to slope biotope stability. Copyright © 2001 John Wiley & Sons, Ltd. [source] Elementary processes of soil,water interaction and thresholds in soil surface dynamics: a reviewEARTH SURFACE PROCESSES AND LANDFORMS, Issue 9 2004Richard S. B. Greene Abstract Elementary processes of soil,water interaction and the thresholds to these processes are important to understand as they control a range of phenomena that occur at the soil surface. In particular processes involved with wetting by rainfall that lead to particle breakdown are critical. This breakdown causes soil detachment and crust formation, which are both key elements in erosion. This paper reviews the range of approaches that have been taken in describing the processes associated with the wetting of a soil surface by rainfall. It assembles the studies that emphasize soil physics, soil chemistry, and erosion mechanics in a framework to enable a balanced consideration of important processes and management strategies to control erosion for a particular situation. In particular it discusses the factors associated with the two basic processes of soil structural breakdown, i.e. slaking and dispersion, and how these processes are critical in particle detachment, transport and surface crust formation. Besides the balance between the exchangeable cation composition and electrolyte concentration (measured as the sodium adsorption ratio (SAR) and total cation concentration (TCC) respectively) of the soil, the importance of energy input and soil organic matter content in controlling clay dispersion is emphasized. Based on the balance between these factors, the soil can be in one of three different regions, i.e. a dispersed region, a ,occulated region and one where the resilience of the soil is variable. The implications of each of these regions to soil erosion management are brie,y outlined, as are the critical roles that soil cover levels and organic matter have in controlling erosion. Finally, the relationship between various laboratory measures of aggregate stability, and corresponding ,eld erosion characteristics, is discussed. Copyright © 2004 John Wiley & Sons, Ltd. [source] Influence of soil type and organic matter content on the bioavailability, accumulation, and toxicity of ,-cypermethrin in the springtail Folsomia candidaENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 5 2010Bjarne Styrishave Abstract The influence of organic matter (OM) content on ,-cypermethrin porewater concentrations and springtail Folsomia candida accumulation was investigated in two soils with different levels of organic matter, a forest soil with a total organic carbon (TOC) content of 5.0% (OM,=,11.5%) and an agricultural soil with a TOC content of 1.3% (OM,=,4.0%). Also, the effects of ,-cypermethrin concentrations in soil and pore water and the influence of soil aging on springtail reproduction were investigated. Springtail reproduction was severely affected by increasing ,-cypermethrin in soil with 1.3% TOC; the median effective concentration value (EC50) was estimated to 23.4,mg/kg (dry wt). Reproduction was only marginally affected in the soil with 5.0% TOC, and no EC50 value could be estimated. However, when expressing ,-cypermethrin accumulation as a function of soil ,-cypermethrin concentrations, no difference was found between the two soil types, and no additional ,-cypermethrin uptake was observed at soil concentrations above approximately 200,mg/kg (dry wt). By using solid-phase microextraction (SPME), it could be demonstrated that ,-cypermethrin porewater concentrations were higher in the soil with low organic matter (LOM) content than in the soil with high organic matter (HOM) content. Furthermore, a clear relationship was found between ,-cypermethrin concentrations in springtails and porewater. Soil aging was not found to exert any effect on ,-cypermethrin toxicity toward springtails. The study indicates that the springtail's accumulation of ,-cypermethrin and reproduction is governed by ,-cypermethrin porewater concentrations rather than the total ,-cypermethrin concentration in soil. Environ. Toxicol. Chem. 2010;29:1084,1090. © 2010 SETAC [source] Avoidance tests in site-specific risk assessment,influence of soil properties on the avoidance response of collembola and earthworms,ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 5 2008Tiago Natal-da-Luz Abstract The ability of organisms to avoid contaminated soils can act as an indicator of toxic potential in a particular soil. Based on the escape response of earthworms and Collembola, avoidance tests with these soil organisms have great potential as early screening tools in site-specific assessment. These tests are becoming more common in soil ecotoxicology, because they are ecologically relevant and have a shorter duration time compared with standardized soil toxicity tests. The avoidance response of soil invertebrates, however, can be influenced by the soil properties (e.g., organic matter content and texture) that affect behavior of the test species in the exposure matrix. Such an influence could mask a possible effect of the contaminant. Therefore, the effects of soil properties on performance of test species in the exposure media should be considered during risk assessment of contaminated soils. Avoidance tests with earthworms (Eisenia andrei) and springtails (Folsomia candida) were performed to identify the influence of both organic matter content and texture on the avoidance response of representative soil organisms. Distinct artificial soils were prepared by modifying quantities of the standard artificial soil components described by the Organization for Economic Co-operation and Development to achieve different organic matter and texture classes. Several combinations of each factor were tested. Results showed that both properties influenced the avoidance response of organisms, which avoided soils with low organic matter content and fine texture. Springtails were less sensitive to changes in these soil constituents compared with earthworms, indicating springtails can be used for site-specific assessments of contaminated soils with a wider range of respective soil properties. [source] Pedometric mapping of soil organic matter using a soil map with quantified uncertaintyEUROPEAN JOURNAL OF SOIL SCIENCE, Issue 3 2010B. Kempen This paper compares three models that use soil type information from point observations and a soil map to map the topsoil organic matter content for the province of Drenthe in the Netherlands. The models differ in how the information on soil type is obtained: model 1 uses soil type as depicted on the soil map for calibration and prediction; model 2 uses soil type as observed in the field for calibration and soil type as depicted on the map for prediction; and model 3 uses observed soil type for calibration and a pedometric soil map with quantified uncertainty for prediction. Calibration of the trend on observed soil type resulted in a much stronger predictive relationship between soil organic matter content and soil type than calibration on mapped soil type. Validation with an independent probability sample showed that model 3 out-performed models 1 and 2 in terms of the mean squared error. However, model 3 over-estimated the prediction error variance and so was too pessimistic about prediction accuracy. Model 2 performed the worst: it had the largest mean squared error and the prediction error variance was strongly under-estimated. Thus validation confirmed that calibration on observed soil type is only valid when the uncertainty about soil type at prediction sites is explicitly accounted for by the model. We conclude that whenever information about the uncertainty of the soil map is available and both soil property and soil type are observed at sampling sites, model 3 can be an improvement over the conventional model 1. [source] Calcite and gypsum solubility products in water-saturated salt-affected soil samples at 25°C and at least up to 14 dS m,1EUROPEAN JOURNAL OF SOIL SCIENCE, Issue 2 2010F. Visconti Calcite and gypsum are salts of major ions characterized by poor solubility compared with other salts that may precipitate in soils. Knowledge of calcite and gypsum solubility products in water-saturated soil samples substantially contributes to a better assessment of processes involved in soil salinity. The new SALSOLCHEMIS code for chemical equilibrium assessment was parameterized with published analytical data for aqueous synthetic calcite and gypsum-saturated solutions. Once parameterized, SALSOLCHEMIS was applied to calculations of the ionic activity products of calcium carbonate and calcium sulphate in 133 water-saturated soil samples from an irrigated salt-affected agricultural area in a semi-arid Mediterranean climate. During parameterization, sufficiently constant values for the ionic activity products of calcium carbonate and calcium sulphate were obtained only when the following were used in SALSOLCHEMIS: (i) the equations of Sposito & Traina for the free ion activity coefficient calculation, (ii) the assumption of the non-existence of the Ca (HCO 3)+ and CaCO3o ion pairs and (iii) a paradigm of total ion activity coefficients. The value of 4.62 can be assumed to be a reliable gypsum solubility product (pKs) in simple aqueous and soil solutions, while a value of 8.43 can only be assumed as a reliable calcite solubility product (pKs) in simple aqueous solutions. The saturated pastes and saturation extracts were found to be calcite over-saturated, with the former significantly being less so (p IAP = 8.29) than the latter (p IAP = 8.22). The calcite over-saturation of saturated pastes increased with the soil organic matter content. Nevertheless, the inhibition of calcite precipitation is caused by the soluble organic matter from a dissolved organic carbon threshold value that lies between 7 and 12 mm. The hypothesis of thermodynamic equilibrium is more adequate for the saturated pastes than for the saturation extracts. [source] Soil metaproteomics: a review of an emerging environmental science.EUROPEAN JOURNAL OF SOIL SCIENCE, Issue 6 2009Significance, methodology, perspectives Summary Soil is a dynamic system in which microorganisms perform important tasks in organic matter transformations and nutrient cycles. Recently, some studies have started to focus on soil metaproteomics as a tool for understanding the function and the role of members of the microbial community. The aim of our work was to provide a review of soil proteomics by looking at the methodologies used in order to illustrate the challenges and gaps in this field, and to provide a broad perspective about the use and meaning of soil metaproteomics. The development of soil metaproteomics is influenced strongly by the extraction methods. Several methods are available but only a few provide an identification of soil proteins, while others extract proteins and are able to separate them by electrophoresis but do not provide an identification. The extraction of humic compounds together with proteins interferes with the latter's separation and identification, although some methods can avoid these chemical interferences. Nevertheless, the major problems regarding protein identification reside in the fact that soil is a poor source of proteins and that there is not enough sequence-database information for the identification of proteins by mass spectrometric analysis. Once these pitfalls have been solved, the identification of soil proteins may provide information about the biogeochemical potential of soils and pollutant degradation and act as an indicator of soil quality, identifying which proteins and microorganisms are affected by a degradation process. The development of soil metaproteomics opens the way to proteomic studies in other complex substrates, such as organic wastes. These studies can be a source of knowledge about the possibility of driven soil restoration in polluted and degraded areas with low organic matter content and even for the identification of enzymes and proteins with a potential biotechnological value. [source] Factors controlling aggregation in a minimum and a conventionally tilled undulating fieldEUROPEAN JOURNAL OF SOIL SCIENCE, Issue 5 2007S. De Gryze Summary Wind and water erosion induce breakdown of soil aggregates and loss of soil organic matter. Whereas most of the relations between aggregation and its driving factors have been established on a plot scale, these relations might be very different within an undulating landscape where both erosion (by wind or water) and deposition occur. The aim of this study was to investigate to what degree spatial patterns in soil variables influence spatial patterns in aggregation under different tillage intensities. We studied an agricultural field of about 3 ha in the silty region of Belgium. The site was split into a conventional tillage (CT) and a minimum tillage (MT) system. Within the field, 396 geo-referenced surface soil samples (0,5 cm) were taken and analyzed for organic matter content, quantity of aggregates and a number of other soil properties. Under CT, 28.5% of the total sample variation was explained by the occurrence of depositional areas, 20.8% by the amount of soil organic matter, and 13.8% by the presence of a clay-rich B horizon which surfaced due to progressive water and tillage erosion. Regression analysis revealed that 27% of the variation in the quantity of macroaggregates (>0.25 mm) was accounted for by these three factors. Under MT, 27.1% of the total sample variation was related to the surface cover of Tertiary sand, 22.6% to the amount of soil organic matter, and 13% to erodibility. These three factors explained 53% of the variation in the quantity of macroaggregates. In the CT system, the correlation between grass- or maize- carbon and the quantity of macroaggregates was strongly linked to erodibility, while this was not the case in the MT system. We concluded that at this site, macroaggregation is dominated by landscape-scale processes (such as water or tillage erosion) rather than determined by the commonly considered local variables (such as small variations in texture or organic matter content). [source] Modelling of colloid leaching from unsaturated, aggregated soilEUROPEAN JOURNAL OF SOIL SCIENCE, Issue 3 2007M. Laegdsmand Summary The migration of colloids in soils can enhance the leaching of strongly sorbing contaminants. We present a model for the simulation of colloid leaching from unsaturated, aggregated soil media under stationary flow. Transport in the intra-aggregate pores is simulated by convection,dispersion, and transport in the interaggregate pores, and a stagnant layer of water surrounding the aggregates, is simulated by diffusion. The model describes the release of colloids from soil aggregates, sorption and desorption processes at the air,water interfaces, and flocculation and subsequent straining from the flowing water. All three processes were simulated as functions of ionic strength. Transport of ions in intra-aggregate pores was simulated by Fickian diffusion. The model was calibrated against experimental results of colloid leaching from columns packed with natural soil aggregates. The aggregates were of two soils differing in organic matter content. On each soil a single calibrated parameter set could describe the experiments with the three ionic strengths. The parameters for release of colloids from the aggregate surface and the sorption properties of the air,water interface were different for the two soils. The key parameters for leaching were the thickness of the stagnant layer of water surrounding the aggregates, the mechanical dispersion, the maximum concentration of colloids at the surface of the aggregates, the sorption capacity and rate coefficient of the colloids at the air,water interface, and the colloid diffusion coefficient. Simulations were also done with two additional irrigation intensities at one ionic strength. Simulated leaching was greater than measured leaching at both irrigation intensities, but the diffusion-controlled release of colloids from the aggregates was simulated correctly. [source] Occurrence, prediction and hydrological effects of water repellency amongst major soil and land-use types in a humid temperate climateEUROPEAN JOURNAL OF SOIL SCIENCE, Issue 5 2006S. H. Doerr Summary Knowledge of soil water repellency distribution, of factors affecting its occurrence and of its hydrological effects stems primarily from regions with a distinct dry season, whereas comparatively little is known about its occurrence in humid temperate regions such as typified by the UK. To address this research gap, we have examined: (i) water repellency persistence (determined by the water drop penetration time method, WDPT) and degree (determined by the critical surface tension method, CST) for soil samples (0,5, 10,15 and 20,25 cm depth) taken from 41 common soil and land-use types in the humid temperate climate of the UK; (ii) the supposed relationship of soil moisture, textural composition and organic matter content with sample repellency; and (iii) the bulk wetting behaviour of undisturbed surface core samples (0,5 cm depth) over a period of up to 1 week. Repellency was found in surface samples of all major soil textural types amongst most permanently vegetated sites, whereas tilled sites were virtually unaffected. Repellency levels reached those of the most severely affected areas elsewhere in the world, decreased in persistence and degree with depth and showed no consistent relationship with soil textural characteristics, organic matter or soil moisture contents, except that above a water content of c. 28% by volume, repellency was absent. Wetting rate assessments of 100 cm3 intact soil cores using continuous water contact (,20 mm pressure head) over a period of up to 7 days showed that across the whole sample range and irrespective of texture, severe to extreme repellency persistence consistently reduced the maximum water content at any given time to well below that of wettable soils. For slightly to moderately repellent soils the results were more variable and thus hydrological effects of such repellency levels are more difficult to predict. The results imply that: (i) repellency is common for many land-use types with permanent vegetation cover in humid temperate climates irrespective of soil texture; (ii) supposedly influential parameters (texture, organic matter, specific water content) are poor general predictors of water repellency, whereas land use and the moisture content below which repellency can occur seem more reliable; and (iii) infiltration and water storage capacity of very repellent soils are considerably less than for comparable wettable soils. [source] Total and soluble fluorine concentrations in relation to properties of soils in New ZealandEUROPEAN JOURNAL OF SOIL SCIENCE, Issue 3 2006P. Loganathan Summary Soil fluorine (F) concentrations continue to increase in agricultural soils receiving regular applications of phosphatic fertilizer. Continued accumulation of soil F poses a risk to grazing ruminants and may pose a future risk to groundwater quality. This paper examines the range of total F (Ft) concentrations and forms of soluble F species and their relationship to selected soil properties in New Zealand agricultural soils. The Ft and soluble F (soil F extracted with water (Fwater) and 0.01 m KCl (FKCl)) concentrations in 27 soil samples (0,75 mm depth) taken from predominantly pasture sites in the North and South Islands of New Zealand were much less than those reported in the literature for sites contaminated with F from industry. The Ft concentrations ranged from 212 to 617 µg F g,1 soil. The F-toxicity risk to grazing animals in farms at these sites through soil ingestion is small at present, but farms with very large Ft concentrations (i.e. > 500 µg F g,1) need to adopt suitable grazing and fertilizer management practices to avoid future F-toxicity risk. The Ft concentration had very strong positive correlations with both total soil P and total soil Cd concentrations, reflecting the link between P fertilizer use and F accumulation in the soils. It also had significant positive correlations with organic matter and amorphous Al oxides contents, indicating that F is strongly bound to Al polymers adsorbed to organic matter and amorphous Al oxides. The Fwater and FKCl concentrations and free F, ion concentrations in water (F,water) and 0.01 m KCl (F,KCl) extracts were generally two and three orders of magnitude, respectively, less than the Ft concentrations and were much less than the concentrations considered phytotoxic. The Fwater and FKCl concentrations were positively related to soil organic matter content and negatively related to soil pH. Regression models relating Fwater and FKCl concentrations to soil organic matter content and soil pH suggest that F can be very soluble in extremely acidic soils (pH(water) < 4.9) with large organic matter contents and therefore F potentially may contaminate groundwater if these soils are also coarse-textured and the water table is shallow. [source] Neural network models to predict cation exchange capacity in arid regions of IranEUROPEAN JOURNAL OF SOIL SCIENCE, Issue 4 2005M. Amini Summary Design and analysis of land-use management scenarios requires detailed soil data. When such data are needed on a large scale, pedotransfer functions (PTFs) could be used to estimate different soil properties. Because existing regression-based PTFs for estimating cation exchange capacity (CEC) do not, in general, apply well to arid areas, this study was conducted (i) to evaluate the existing models and (ii) to develop neural network-based PTFs for predicting CEC in Aridisols of Isfahan in central Iran. As most researches have found a significant correlation between CEC and soil organic matter content (OM) and clay content, we also used these two variables for modelling of CEC. We tested several published PTFs and developed two neural network algorithms using multilayer perceptron and general regression neural networks based on a set of 170 soil samples. The data set was divided into two subsets for calibration and testing of the models. In general, the neural network-based models provided more reliable predictions than the regression-based PTFs. [source] Changes in organic matter, nitrogen, phosphorus and cations in soil as a result of fire and water erosion in a Mediterranean landscapeEUROPEAN JOURNAL OF SOIL SCIENCE, Issue 2 2000E. Gimeno-García Summary Fire affects large parts of the dry Mediterranean shrubland, resulting in erosion and losses of plant nutrients. We have attempted to measure these effects experimentally on a calcareous hillside representative of such shrubland. Experimental fires were made on plots (4 m × 20 m) in which the fuel was controlled to obtain two different fire intensities giving means of soil surface temperature of 439°C and 232°C with temperatures exceeding 100°C lasting for 36 min and 17 min. The immediate and subsequent changes induced by fire on the soil's organic matter content and other soil chemical properties were evaluated, together with the impact of water erosion. Seven erosive rain events, which occurred after the experimental fires (from August 1995 to December 1996), were selected, and on them runoff and sediment produced from each plot were measured. The sediments collected were weighed and analysed. Taking into account the variations induced by fire on the soil properties and their losses by water erosion, estimates of the net inputs and outputs of the soil system were made. Results show that the greatest losses of both soil and nutrients took place in the 4 months immediately after the fire. Plots affected by the most intense fire showed greater losses of soil (4077 kg ha,1) than those with moderate fire intensity (3280 kg ha,1). The unburned plots produced the least sediment (72.8 kg ha,1). Organic matter and nutrient losses by water erosion were related to the degree of fire intensity. However, the largest losses of N-NH4+ and N-NO3, by water erosion corresponded to the moderate fire (8.1 and 7.5 mg N m,2, respectively). [source] Growth of Frankia strains in leaf litter-amended soil and the rhizosphere of a nonactinorhizal plantFEMS MICROBIOLOGY ECOLOGY, Issue 1 2009Babur S. Mirza Abstract The ability of Frankia strains to grow in the rhizosphere of a nonactinorhizal plant, Betula pendula, in surrounding bulk soil and in soil amended with leaf litter was analyzed 6 weeks after inoculation of pure cultures by in situ hybridization. Growth responses were related to taxonomic position as determined by comparative sequence analysis of nifH gene fragments and of an actinomycetes-specific insertion in Domain III of the 23S rRNA gene. Phylogenetic analyses confirmed the basic classification of Frankia strains by host infection groups, and allowed a further differentiation of Frankia clusters within the Alnus host infection group. Except for Casuarina -infective Frankia strains, all other strains of the Alnus and the Elaeagnus host infection groups displayed growth in the rhizosphere of B. pendula, and none of them grew in the surrounding bulk soil that was characterized by a very low organic matter content. Only a small number of strains that all belonged to a distinct phylogenetic cluster within the Alnus host infection group grew in soil amended with ground leaf litter from B. pendula. These results demonstrate that saprotrophic growth of frankiae is a common trait for most members of the genus, and the supporting factors for growth (i.e. carbon utilization capabilities) varied with the host infection group and the phylogenetic affiliation of the strains. [source] Contrasting effects of repeated summer drought on soil carbon efflux in hydric and mesic heathland soilsGLOBAL CHANGE BIOLOGY, Issue 10 2008ALWYN SOWERBY Abstract Current predictions of climate change include altered rainfall patterns throughout Europe, continental USA and areas such as the Amazon. The effect of this on soil carbon efflux remains unclear although several modelling studies have highlighted the potential importance of drought for carbon storage. To test the importance of drought, and more importantly repeated drought year-on-year, we used automated retractable curtains to exclude rain and produce repeated summer drought in three heathlands at varying moisture conditions. This included a hydric system limited by water-excess (in the UK) and two mesic systems with seasonal water limitation in Denmark (DK) and the Netherlands (NL). The experimental rainfall reductions were set to reflect single year droughts observed in the last decade with exclusion of rain for 2,3 months of the year resulting in a 20,26% reduction in annual rainfall and 23,38% reduction in mean soil moisture during the drought period. Unexpectedly, sustained reduction in soil moisture over winter (between drought periods) was also observed at all three sites, along with a reduction in the maximum water-holding capacity attained. Three hypotheses are discussed which may have contributed to this lack of recovery in soil moisture: hydrophobicity of soil organic matter, increased water use by plants and increased cracking of the soil. The responses of soil respiration to this change in soil moisture varied among the sites: decreased rates were observed at the water-limited NL and DK sites whilst they increased at the UK site. Reduced sensitivity of soil respiration to soil temperature was observed at soil moisture contents above 55% at the UK site and below 20% and 13% at the NL and DK sites, respectively. Soil respiration rates recovered to predrought levels in the NL and DK sites during the winter re-wetting period that indicates any change in soil C storage due to changes in soil C efflux may be short lived in these mesic systems. In contrast, in the hydric UK site after 2 years of drought treatment, the persistent reduction in soil moisture throughout the year resulted in a year-round increase in soil respiration flux, a response that accelerated over time to 40% above control levels. These findings suggest that carbon-rich soils with high organic matter content may act as a significant source of CO2 to the atmosphere following repeated summer drought. Nonrecovery of soil moisture and a persistent increase in soil respiration may be the primary mechanism underlying the reported substantial losses of soil carbon from UK organic soils over the last 20 years. These findings indicate that the water status of an ecosystem will be a critical factor to consider in determining the impact of drought on the soil carbon fluxes and storage. [source] The relationship between local and regional diatom richness is mediated by the local and regional environmentGLOBAL ECOLOGY, Issue 3 2009Sophia I. Passy ABSTRACT Aim, In this continental study, species richness at local (LSR) and regional (RSR) scales was correlated and examined as a function of stream (local) and watershed (regional) environment in an effort to elucidate what factors control diatom biodiversity across scales. Location, Conterminous United States. Methods, Data on diatom richness, stream conditions and watershed properties were generated by the US Geological Survey. In the present investigation, RSR was estimated as the total diatom richness in a hydrologic study unit and, together with stream and watershed characteristics, was included in stepwise multiple regressions of LSR. The unique and shared contributions of RSR, stream and watershed environment to the explained variance in LSR were determined by variance partitioning. RSR was regressed against stream and basin features averaged per study unit. Results, LSR responded most strongly to variability in stream manganese concentration and RSR. Other predictors included stream discharge and iron concentration, soil organic matter content and fertilization, and proportions of open water, barren land and forest in the watershed. Variance partitioning revealed that RSR had the lowest independent contribution to explained variance in LSR. Multiple regressions identified average stream iron concentration as the most important predictor of RSR. Main conclusions, Local micronutrient concentration was the major predictor of LSR, followed by RSR. Since average micronutrient supply in the region was the chief determinant of RSR, it is proposed that micronutrients had both a direct effect on LSR and an indirect effect through RSR. The same argument is extended to watershed features with an impact on stream trophic status, because of their substantial contributions to the explained variance in both LSR and RSR. Considering that the major proportion of LSR variance explained by RSR originated from the covariance of RSR with stream and watershed properties, it is concluded that the LSR,RSR relationship was mediated by the local and regional environment. [source] Impact of land use on the hydraulic properties of the topsoil in a small French catchmentHYDROLOGICAL PROCESSES, Issue 17 2010E. Gonzalez-Sosa Abstract The hydraulic properties of the topsoil control the partition of rainfall into infiltration and runoff at the soil surface. They must be characterized for distributed hydrological modelling. This study presents the results of a field campaign documenting topsoil hydraulic properties in a small French suburban catchment (7 km2) located near Lyon, France. Two types of infiltration tests were performed: single ring infiltration tests under positive head and tension-disk infiltration using a mini-disk. Both categories were processed using the BEST,Beerkan Estimation of Soil Transfer parameters,method to derive parameters describing the retention and hydraulic conductivity curves. Dry bulk density and particle size data were also sampled. Almost all the topsoils were found to belong to the sandy loam soil class. No significant differences in hydraulic properties were found in terms of pedologic units, but the results showed a high impact of land use on these properties. The lowest dry bulk density values were obtained in forested soils with the highest organic matter content. Permanent pasture soils showed intermediate values, whereas the highest values were encountered in cultivated lands. For saturated hydraulic conductivity, the highest values were found in broad-leaved forests and small woods. The complementary use of tension-disk and positive head infiltration tests highlighted a sharp increase of hydraulic conductivity between near saturation and saturated conditions, attributed to macroporosity effect. The ratio of median saturated hydraulic conductivity to median hydraulic conductivity at a pressure of , 20 mm of water was about 50. The study suggests that soil texture, such as used in most pedo-transfer functions, might not be sufficient to properly map the variability of soil hydraulic properties. Land use information should be considered in the parameterizations of topsoil within hydrological models to better represent in situ conditions, as illustrated in the paper. Copyright © 2010 John Wiley & Sons, Ltd. [source] First-year post-fire erosion rates in Bitterroot National Forest, Montana,HYDROLOGICAL PROCESSES, Issue 8 2007Kevin M. Spigel Abstract Accelerated runoff and erosion commonly occur following forest fires due to combustion of protective forest floor material, which results in bare soil being exposed to overland flow and raindrop impact, as well as water repellent soil conditions. After the 2000 Valley Complex Fires in the Bitterroot National Forest of west-central Montana, four sets of six hillslope plots were established to measure first-year post-wildfire erosion rates on steep slopes (greater than 50%) that had burned with high severity. Silt fences were installed at the base of each plot to trap eroded sediment from a contributing area of 100 m2. Rain gauges were installed to correlate rain event characteristics to the event sediment yield. After each sediment-producing rain event, the collected sediment was removed from the silt fence and weighed on site, and a sub-sample taken to determine dry weight, particle size distribution, organic matter content, and nutrient content of the eroded material. Rainfall intensity was the only significant factor in determining post-fire erosion rates from individual storm events. Short duration, high intensity thunderstorms with a maximum 10-min rainfall intensity of 75 mm h,1 caused the highest erosion rates (greater than 20 t ha,1). Long duration, low intensity rains produced little erosion (less than 0·01 t ha,1). Total C and N in the collected sediment varied directly with the organic matter; because the collected sediment was mostly mineral soil, the C and N content was small. Minimal amounts of Mg, Ca, and K were detected in the eroded sediments. The mean annual erosion rate predicted by Disturbed WEPP (Water Erosion Prediction Project) was 15% less than the mean annual erosion rate measured, which is within the accuracy range of the model. Published in 2007 by John Wiley & Sons, Ltd. [source] Effects of hydrological processes on the chemical composition of riverine suspended sediment in the Zhujiang River, ChinaHYDROLOGICAL PROCESSES, Issue 12 2003Quanzhou Gao Abstract The chemical composition of riverine suspended sediment is the integration of the weathering crust minerals, soil organic matter and erosion agency within a specific drainage basin, which has been largely disturbed by the human activities. Selected metal elements of the riverine suspended sediment in the Zhujiang River were analysed using inductively coupled plasma,atomic emission spectrometry (ICP,AES) in three different hydrological phases from 1997 to 1998 at Makou and Sanshui hydrographic gauge stations, located at the lower reaches of the two main tributaries of the Zhujiang River, i.e. the Xijiang and the Beijing Rivers respectively. Organic carbon and nitrogen were also analysed using a conventional element analyser. The results demonstrate that the chemical composition of the riverine suspended sediment show obvious variability in different hydrological phases, which closely correlate to the organic matter content in suspended sediment. Intensified erosion in the flood phase results in lower concentration of the organic matter than that in the lower water level phase. The riverine suspended sediment with rich organic matter in the lower water level phase adsorbs some metal elements from the river water. Copyright © 2003 John Wiley & Sons, Ltd. [source] Factors Affecting Macroinvertebrate Richness and Diversity in Portuguese Streams: a Two-Scale AnalysisINTERNATIONAL REVIEW OF HYDROBIOLOGY, Issue 2 2004Manuel A. S. Graça Abstract We analysed the spatial patterns in macroinvertebrate taxon richness and abundance at two scales: sampling unit and basin. We sampled 12 stream sites in three zones of Portugal, differing in climate geomorphology and water chemistry. At a sampling unit scale, substratum organic matter content, depth and the dominant size of substratum particles were correlated with numbers of taxa and individuals. We propose that the number of taxa at a small scale depends on the number of individuals, which in turn is the result of organic matter accumulation, hydrologic and substratum characteristics. The environmental parameters better explaining the large-scale biological data were temperature, minimum size of substratum particles and pH. Regardless of the relative importance of variable types and mechanisms regulating stream invertebrates along the climatic gradient, rivers from the North and Centre appeared to be richer in taxa than the typically Mediterranean streams in the South. [source] Kinetics of reactions between chlorine or bromine and the herbicides diuron and isoproturonJOURNAL OF CHEMICAL TECHNOLOGY & BIOTECHNOLOGY, Issue 2 2007Juan L Acero Abstract The chemical oxidation of two herbicide derivatives of the phenylurea group,diuron and isoproturon,has been carried out by means of chlorine, in the absence and in the presence of bromide ion. Apparent second-order rate constants for the reactions between chlorine and the herbicides were determined to be below 0.45 L mol,1 s,1. Hypobromous acid reacts faster with the investigated herbicides, especially with isoproturon (kapp = 24.8 L mol,1 s,1 at pH 7). While pH exerts a negative effect on the bromination rate, the maximum chlorination rate was found to be at circumneutral pH. In a second stage, the oxidation of each compound was conducted in different natural waters, in order to simulate the processes which take place in water purification plants. Again, chlorine was used as an oxidant, and bromide ion was added in some experiments with the aim of producing the more reactive HOBr oxidant. The herbicide oxidation rate was inversely proportional to the organic matter content of the natural water. However, the formation of trihalomethanes (THMs) was directly proportional to the organic matter content and constitutes a limitation for the application of chlorine during drinking water treatment. Finally, the evolution of herbicide concentration was modeled and predicted by applying a kinetics approach based on the rate constants for the reactions between the herbicides and the active oxidants. Copyright © 2007 Society of Chemical Industry [source] Energy density of anchovy Engraulis encrasicolus in the Bay of BiscayJOURNAL OF FISH BIOLOGY, Issue 3 2009J. Dubreuil The energy density (ED) of anchovy Engraulis encrasicolus in the Bay of Biscay was determined by direct calorimetry and its evolution with size, age and season was investigated. The water content and energy density varied seasonally following opposite trends. The ED g,1 of wet mass (MW) was highest at the end of the feeding season (autumn: c. 8 kJ g,1MW) and lowest in late winter (c. 6 kJ g,1MW). In winter, the fish lost mass, which was partially replaced by water, and the energy density decreased. These variations in water content and organic matter content may have implications on the buoyancy of the fish. The water content was the major driver of the energy density variations for a MW basis. A significant linear relationship was established between ED g,1 (y) and the per cent dry mass (MD; x): y =,4·937 + 0·411x. In the light of the current literature, this relationship seemed to be not only species specific but also ecosystem specific. Calibration and validation of fish bioenergetics models require energy content measurements on fish samples collected at sea. The present study provides a first reference for the energetics of E. encrasicolus in the Bay of Biscay. [source] Modern distribution of saltmarsh testate amoebae: regional variability of zonation and response to environmental variablesJOURNAL OF QUATERNARY SCIENCE, Issue 5-6 2002Dan J. Charman Abstract Sea-level reconstruction from biological indicators in saltmarsh sediments requires an understanding of the modern ecology of the organisms concerned. Previous work suggested that testate amoebae are a potential new group of organisms to use for sea-level reconstruction, especially combined with diatoms and foraminifera. This paper analyses data from three saltmarshes on the Taf estuary, South Wales, the River Erme, Devon, and at Brancaster, Norfolk (UK) to (i) test for the presence and zonation of testate amoebae in relation to elevation; (ii) examine the similarity of zonation patterns between marshes; and (iii) explore the relationship between assemblage composition and a wider range of environmental variables. In addition we provide an update on the identification of testate amoebae on saltmarshes. Our results confirm that at all sites the primary environmental gradient is tidal inundation. Major changes in taxa along the tidal gradient are similar except for the lowest elevations, where different taxa become dominant at different sites. Canonical correspondence analysis (CCA) shows that assemblage composition is also strongly related to other variables, independent of the tidal position. Salinity, particle size and organic matter content are particularly important, and there is a statistically significant geographical effect on assemblages. Relationships between sea-level and assemblage composition are often stronger for individual sites, suggesting that local data sets should be used for quantitative sea-level reconstructions. However, the combined data set would provide more robust estimates of past sea-level change from fossil data. Other environmental variables explain as much of the variability in species assemblages as tidal parameters and should be considered more often in sea-level reconstructions based on microfossil indicators. Copyright © 2002 John Wiley & Sons, Ltd. [source] Impact of Dredging on Phosphorus Transport in Agricultural Drainage Ditches of the Atlantic Coastal Plain,JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION, Issue 6 2008Francirose Shigaki Abstract:, Drainage ditches can be a key conduit of phosphorus (P) between agricultural soils of the Atlantic Coastal Plain and local surface waters, including the Chesapeake Bay. This study sought to quantify the effect of a common ditch management practice, sediment dredging, on fate of P in drainage ditches. Sediments from two drainage ditches that had been monitored for seven years and had similar characteristics (flow, P loadings, sediment properties) were sampled (0-5 cm) after one of the ditches had been dredged, which removed fine textured sediments (clay = 41%) with high organic matter content (85 g/kg) and exposed coarse textured sediments (clay = 15%) with low organic matter content (2.2 g/kg). Sediments were subjected to a three-phase experiment (equilibrium, uptake, and release) in recirculating 10-m-long, 0.2-m-wide, and 5-cm-deep flumes to evaluate their role as sources and sinks of P. Under conditions of low initial P concentrations in flume water, sediments from the dredged ditch released 13 times less P to the water than did sediments from the ditch that had not been dredged, equivalent to 24 mg dissolved P. However, the sediments from the dredged ditch removed 19% less P (76 mg) from the flume water when it was spiked with dissolved P to approximate long-term runoff concentrations. Irradiation of sediments to destroy microorganisms revealed that biological processes accounted for up to 30% of P uptake in the coarse textured sediments of the dredged ditch and 18% in the fine textured sediments of the undredged ditch. Results indicate that dredging of coastal plain drainage ditches can potentially impact the P buffering capacity of ditches draining agricultural soils with a high potential for P runoff. [source] Influence of water and nitrogen deficit on fruit ripening and aroma potential of Vitis vinifera L cv Sauvignon blanc in field conditionsJOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE, Issue 1 2005Catherine Peyrot des Gachons Abstract S -Cysteine conjugate precursors of three volatile thiols were monitored in Vitis vinifera L cv Sauvignon blanc grapes during fruit ripening to assess the influence of vine water and nitrogen status on the grape aroma potential in field conditions. Four dry farmed plots were studied in the Pessac-Léognan and Graves appellations (Bordeaux area) in 1998, which was a very dry vintage, and in 1999, when regular summer rainfall occurred. Soil water-holding capacity ranged from very low to high. Soil total nitrogen content was related to soil organic matter content, which was highly variable on the four plots. Vine vigour was enhanced by both high water and nitrogen status. Major compounds in grapes depended mainly on vine water status. Water deficit-stressed vines produced small berries with low sugar and low total acidity. Grape aroma potential was highest in vines under mild water deficit and moderate nitrogen supply. Severe water deficit stress seemed to limit aroma potential, as did nitrogen deficiency. Consequences for site selection and irrigation management for Sauvignon blanc are discussed. Copyright © 2004 Society of Chemical Industry [source] Temporal and spatial patterns based on sediment and sediment,water interface characteristics along a cascade of reservoirs (Paranapanema River, south-east Brazil)LAKES & RESERVOIRS: RESEARCH AND MANAGEMENT, Issue 1 2005Adriana Jorcin Abstract Physical and chemical characteristics of the sediments in a cascade of eight reservoirs located in the Paranapanema River (south-east Brazil) were analysed during two consecutive years during summer (January), autumn (April), winter (July) and spring (October) of 2000 and 2001, respectively. The granulometric texture, organic matter content and nutrient concentration (total nitrogen and phosphorus) were determined in the superficial sediment of 19 sampling stations, as well as the temperature, dissolved oxygen, pH, conductivity and redox potential in the bottom layer of the water column. Seasonal and spatial changes were observed for both years, especially for organic matter and nutrient concentrations. Three different areas could be identified along the river, which corresponded to the upper, middle and lower Paranapanema basin. The first area was characterized by an increase of nutrients and organic matter in the sediments and a decrease of temperature and dissolved oxygen in the downstream direction. The second one represented a region where fluctuations in nutrient and organic matter concentrations and a reduction in dissolved oxygen were observed. In the third area, there was an increase in nutrient and organic matter in the sediments and also an increase in temperature and dissolved oxygen towards the river mouth. The results of the principal components analysis, using water and sediments variables, showed the ordination of sampling stations by periods: wet (January,April) and dry (July,October) during 2000. This pattern was also verified during 2001, but with slight changes, probably due to the increase in the rains which would have produced certain homogenization effects along the river. [source] Assessment and demarcation of trail degradation in a nature reserve, using GIS: case of Bukit Timah Nature ReserveLAND DEGRADATION AND DEVELOPMENT, Issue 5 2007K. Chatterjea Abstract With a significant rise in popularity of nature areas, particularly in urban settings like Singapore, Nature Reserves are being increasingly opened for public recreational use. In the Bukit Timah Nature Reserve (BTNR), the only remnant primary rain forest reserve in Singapore, trail networks are being expanded to meet this growing public demand. The physical condition of the present trail networks was assessed by monitoring the changes in surface compaction, soil moisture, infiltration rates, soil organic matter content, root density, litter cover and rill development. These parameters were compared with similar data obtained from undisturbed forested slopes to analyse the degree of changes brought about by trail usage. Significant changes occurred in all measured parameters, indicating observable degradation of the trails, particularly on vulnerable slopes. These changes are due to the heavy and increased use of the forest by visitors. Penetration resistance and shear strength of the top surface layers of the trails are important indicators of trail degradation status and these have been plotted, using GIS, to demarcate trails under different levels of stress. This field monitoring provides a relevant local assessment of trail conditions. It has potential for use in decision-making in future planning and forest management under similar site conditions. Copyright © 2007 John Wiley & Sons, Ltd. [source] Habitat heterogeneity and its influence on benthic biodiversity in oxygen minimum zonesMARINE ECOLOGY, Issue 1 2010Andrew J. Gooday Abstract Oxygen minimum zones (OMZs; midwater regions with O2 concentrations <0.5 ml l,1) are mid-water features that intercept continental margins at bathyal depths (100,1000 m). They are particularly well developed in the Eastern Pacific Ocean, the Arabian Sea and the Bay of Bengal. Based on analyses of data from these regions, we consider (i) how benthic habitat heterogeneity is manifested within OMZs, (ii) which aspects of this heterogeneity exert the greatest influence on alpha and beta diversity within particular OMZs and (iii) how heterogeneity associated with OMZs influences regional (gamma) diversity on continental margins. Sources of sea-floor habitat heterogeneity within OMZs include bottom-water oxygen and sulphide gradients, substratum characteristics, bacterial mats, and variations in the organic matter content of the sediment and pH. On some margins, hard grounds, formed of phosphorites, carbonates or biotic substrata, represent distinct subhabitats colonized by encrusting faunas. Most of the heterogeneity associated with OMZs, however, is created by strong sea-floor oxygen gradients, reinforced by changes in sediment characteristics and organic matter content. For the Pakistan margin, combining these parameters revealed clear environmental and faunal differences between the OMZ core and the upper and lower boundary regions. In all Pacific and Arabian Sea OMZs examined, oxygen appears to be the master driver of alpha and beta diversity in all benthic faunal groups for which data exist, as well as macrofaunal assemblage composition, particularly in the OMZ core. However, other factors, notably organic matter quantity and quality and sediment characteristics, come into play as oxygen concentrations begin to rise. The influence of OMZs on meiofaunal, macrofaunal and megafaunal regional (gamma) diversity is difficult to assess. Hypoxia is associated with a reduction in species richness in all benthic faunal groups, but there is also evidence for endemism in OMZ settings. We conclude that, on balance, OMZs probably enhance regional diversity, particularly in taxa such as Foraminifera, which are more tolerant of hypoxia than others. Over evolutionary timescales, they may promote speciation by creating strong gradients in selective pressures and barriers to gene flow. [source] |