Home About us Contact | |||
Organic Anions (organic + anion)
Terms modified by Organic Anions Selected AbstractsThe dependence of the electrophoretic mobility of small organic ions on ionic strength and complex formationELECTROPHORESIS, Issue 5 2010Stuart A. Allison Abstract The ionic strength dependence of the electrophoretic mobility of small organic anions with valencies up to ,3 is investigated in this study. Provided the anions are not too aspherical, it is argued that shape and charge distribution have little influence on mobility. To a good approximation, the electrophoretic mobility of a small particle should be equal to that of a model sphere with the same hydrodynamic radius and same net charge. For small ions, the relaxation effect (distortion of the ion atmosphere from equilibrium due to external electric and flow fields) is significant even for monovalent ions. Alternative procedures of accounting for the relaxation effect are examined. In order to account for the ionic strength dependence of a specific set of nonaromatic and aromatic anions in aqueous solution, it is necessary to include complex formation between the anion with species in the BGE. A number of possible complexes are considered. When the BGE is Tris-acetate, the most important of these involves the complex formed between anion and Tris, the principle cation in the BGE. When the BGE is sodium borate, an anion,anion (borate) complex appears to be important, at least when the organic anion is monovalent. An algorithm is developed to analyze the ionic strength dependence of the electrophoretic mobility. This algorithm is applied to two sets of organic anions from two independent research groups. [source] Effects of non-steroidal anti-inflammatory drugs on the pharmacokinetics and elimination of aciclovir in ratsJOURNAL OF PHARMACY AND PHARMACOLOGY: AN INTERNATI ONAL JOURNAL OF PHARMACEUTICAL SCIENCE, Issue 3 2005Hye-Sun Gwak This study aims to investigate the effect of commonly used non-steroidal anti-inflammatory drugs (NSAIDs) on the pharmacokinetics and the renal elimination of aciclovir in rats. Pharmacokinetic parameters were determined following an intravenous administration of aciclovir (5 mg kg,1) to rats in the presence and absence of ketoprofen or naproxen (25 mg kg,1). Compared with the control (given aciclovir alone), pre-treatment with ketoprofen or naproxen 30 min before aciclovir administration significantly altered the pharmacokinetics of aciclovir. Renal clearance of aciclovir was reduced by approximately two fold in the presence of ketoprofen or naproxen. Consequently, the systemic exposure (AUC) to aciclovir in the rats pre-treated with ketoprofen or naproxen was significantly (P < 0.05) higher than that from the control group given aciclovir alone. Furthermore, the mean terminal plasma half-life of aciclovir was enhanced by 4,5 fold by pre-treatment with ketoprofen or naproxen. These results suggest that NSAIDs, such as ketoprofen and naproxen, are effective in altering the pharmacokinetics of aciclovir by inhibiting the organic anion transporter-mediated tubular secretion of aciclovir. Therefore, concomitant use of ketoprofen or naproxen with aciclovir should require close monitoring for clinical consequence of potential drug interaction. [source] Cultured mammary epithelial monolayers (BME-UV) express functional organic anion and cation transportersJOURNAL OF VETERINARY PHARMACOLOGY & THERAPEUTICS, Issue 5 2009M. M. AL-BATAINEH There is ongoing concern about the potential adverse effects of xenobiotic residues in cows' milk to the human consumer. Although drugs that are intentionally administered to lactating dairy cattle are rigorously regulated to prevent harmful residues, there are numerous other potential sources of exposure that are not as easily controlled. For example, cattle may be exposed to mycotoxins, pesticides and/or persistent organic pollutants through feed, water and inhalation of polluted air. Accurate estimates of the rate and extent of excretion of these compounds into milk is important to assess the risk of exposure through cows' milk. In the present study, the expression of carrier mediated transport processes in cultured monolayers of an immortalized bovine mammary epithelial cell line (BME-UV) was determined using a flow-through diffusion cell system, selective substrates and inhibitors of organic cation transporters (OCT) and organic anion transporters (OAT). The basal-to-apical (BL-to-Ap) flux of tetraethylammonium and estrone sulfate significantly exceeded their flux in the opposite direction. The addition of selective inhibitors to the donor compartment significantly decreased the BL-to-Ap flux of either selective substrate. These results suggest that both OCT and OAT are functionally expressed by BME-UV cells. [source] Effects of acute or chronic exposure to dietary organic anions on secretion of methotrexate and salicylate by Malpighian tubules of Drosophila melanogaster larvaeARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY (ELECTRONIC), Issue 3 2010Sarah Chahine Abstract The effects of dietary exposure to organic anions on the physiology of isolated Malpighian tubules and on tubule gene expression were examined using larvae of Drosophila melanogaster. Acute (24,h) or chronic (7,d) exposure to type I organic anions (fluorescein or salicylate) was associated with increased fluid secretion rates and increased fluxes of both salicylate and the type II organic anion methotrexate. By contrast, chronic exposure to dietary methotrexate was associated with increased fluid secretion rate and increased flux of methotrexate, but not salicylate. Exposure to methotrexate in the diet resulted in increases in the expression of a multidrug efflux transporter gene (MET; CG30344) in the Malpighian tubules. There were also increases in expression of genes for either a Drosophila multidrug resistance,associated protein (dMRP; CG6214) or an organic anion transporting polypeptide (OATP; CG3380), depending on the concentration of methotrexate in the diet. Exposure to salicylate in the diet was associated with an increase in expression of dMRP and with decreases of MET and OATP. Exposure to dietary salicylate or methotrexate was also associated with different patterns of expression of heat shock protein genes. The results suggest that exposure to specific type I or type II organic anions has multiple effects and results not only in increased organic anion transport but also in increased rates of inorganic ion transport, which drives osmotically-obliged fluid secretion. Increased fluid secretion may enhance secretion of organic anions by eliminating diffusive backflux from the tubule lumen to the hemolymph. © 2010 Wiley Periodicals, Inc. [source] Microarray analysis of changes in renal phenotype in the ethylene glycol rat model of urolithiasis: potential and pitfallsBJU INTERNATIONAL, Issue 4 2004Daniel H.-C. OBJECTIVES To investigate, in an initial study, the use of microarray analysis (MA) to develop an information base for urolithiasis. MA enables the screening of thousands of genes simultaneously making it the technique of choice for situations where the results are known, but the underlying mechanisms are not. Little is known about the pathological changes occurring in the kidney during urolithiasis and this has severely hampered efforts to develop effective therapeutics. MATERIALS AND METHODS Male rats were treated with 0.75% ethylene glycol for 2, 4 or 8 weeks; after death the kidneys were processed for RNA isolation and MA, conducted using a rat-based chip (one kidney/chip) and the results confirmed by reverse transcription-polymerase chain reaction (RT-PCR, 21 probe sets; control, four rats; treated, five rats). Targets were defined as different by the software if the fold change (FC) was ,,2, and sorted into functional categories using a data-mining tool. The repeatability of MA was investigated by subjecting the 4-week samples to MA in two independent runs. RESULTS The results for targets with a FC of , 2 were plotted (y = 1.01x , 0.75; r2 0.84). Comparing the results obtained by RT-PCR and MA showed a good qualitative correlation for those targets having a FC of ,,5 as determined by MA. Changes in the expression of genes associated with tubule function and regulation, oxidative damage, and inflammation were the most common in the functional categories. Changes in the expression of tubule-specific markers indicated that there was damage to the proximal (,-adducin, organic anion and cation transporters, sodium-hydrogen exchange protein-isoform 3) and distal tubules (,-adducin, kallikrein) at 2 and 4 weeks. Increased expression of mitochondrial uncoupling protein indicated that there were changes to the mitochondria and oxidative stress at 2 and 4 weeks. CONCLUSION This study shows the power of MA as an exploratory technique, and changes in the expression of several physiologically important genes whose expression has not previously been reported to be affected by hyperoxaluria or calcium oxalate crystalluria. [source] Human liver-specific organic anion transporter-2 is a potent prognostic factor for human breast carcinomaCANCER SCIENCE, Issue 10 2007Mitsuhisa Muto Human liver-specific organic anion transporter-2 (LST-2/OATP8/SLCO1B3) has been demonstrated to be expressed in various gastrointestinal carcinomas and also to play pivotal roles in the uptake of a wide variety of both endogenous and exogenous anionic compounds, including bile acids, conjugated steroids and hormones, into hepatocytes in the human liver. However, the biological significance of LST-2 in human carcinomas remains unknown. In the present study, we examined the expression of LST-2 in 102 cases of breast carcinoma using immunohistochemistry and correlated the findings with various clinicopathological parameters in order to examine the possible biological and clinical significance of LST-2. LST-2 immunoreactivity was detected in 51 cases (50.0%); of these 51 positive cases, LST-2 immunoreactivity was inversely correlated with tumor size (P = 0.0289). In addition, LST-2 immunoreactivity was significantly associated with a decreased risk of recurrence and improved prognosis by both univariate (P = 0.02 and P = 0.01) and multivariate (P = 0.03 and P = 0.01) analyses. In the estrogen receptor-positive groups, the LST-2-positive patients showed good prognoses. Considering that LST-2 transports estrone-3-sulfate, these results suggest that LST-2 overexpression is associated with a hormone-dependent growth mechanism of the breast cancer. The results of our present study demonstrate that LST-2 immunoreactivity is a potent prognostic factor in human breast cancer. (Cancer Sci 2007; 98: 1570,1576) [source] Iodide-Selective Electrode Based on Copper PhthalocyanineELECTROANALYSIS, Issue 23 2002Saeed Shahrokhian Abstract Copper phthalocyanine was used as ion carrier for preparing polymeric membrane selective sensor for detection of iodide. The electrode was prepared by incorporating the ionophore into plasticized poly(vinyl chloride) (PVC) membrane, coated on the surface of graphite electrode. This novel electrode shows high selectivity for iodide with respect to many common inorganic and organic anions. The effects of membrane composition, pH and the influence of lipophilic cationic and anionic additives and also nature of plasticizer on the response characteristics of the electrode were investigated. A calibration plot with near-Nernestian slope for iodide was observed over a wide linear range of five decades of concentration (5×10,6,1×10,1,M). The electrode has a fast response time, and micro-molar detection limit (ca. 1×10,6,M iodide) and could be used over a wide pH range of 3.0,8.0. Application of the electrode to the potentiometric titration of iodide ion with silver nitrate is reported. This sensor is used for determination of the minute amounts of iodide in lake water samples. [source] Microfluidic chip-capillary electrophoresis for two orders extension of adjustable upper working range for profiling of inorganic and organic anions in urineELECTROPHORESIS, Issue 18 2010Wen Peng Guo Abstract To meet the need for onsite monitoring of urine anions, a microfluidic chip-capillary electrophoresis device was designed, fabricated and tested to extend the upper CE working range for an enhancement up to 500 fold (100 fold for sample dilution and 5 folds for CE injection) in order to analyze highly variable anionic metabolites in urine samples. Capillaries were embedded between two PMMA plates with laser-fabricated microchannel patterns to produce the microfluidic chip-capillary electrophoresis to perform standard/sample dilution and CE injection with adjustable dilution ratios. A circular ferrofluid valve was incorporated on-chip to perform cleanup and conditioning, mixing and dilution, injection and CE separation. Under optimized conditions, a complete assay for four samples can be achieved within an hour for 15 anions commonly found in urines. Satisfactory working ranges (0.005,500,mM) and low detection limits (0.5,6.5,,M based on S/N =2) are obtained with satisfactory repeatability (RSD, n=5) 0.52,0.87% and 4.1,6.5% for migration time and peak area, respectively. The working ranges with two orders adjustable upper extension are adequate to cover all analytes concentrations commonly found in human urine samples. The device fabricated shows sufficiently large experimentally verifiable enhancement factor to meet the application requirements. Its reliability was established by more than 94% recoveries of spiked standards and agreeable results from parallel method comparison with conventional ion chromatography method. The extension of the upper CE working range enables flexible onsite dilution on demand, a quick turn-around of results, and a low-cost device suitable for bedside monitoring of patients under critical conditions for metabolic disorders. [source] The dependence of the electrophoretic mobility of small organic ions on ionic strength and complex formationELECTROPHORESIS, Issue 5 2010Stuart A. Allison Abstract The ionic strength dependence of the electrophoretic mobility of small organic anions with valencies up to ,3 is investigated in this study. Provided the anions are not too aspherical, it is argued that shape and charge distribution have little influence on mobility. To a good approximation, the electrophoretic mobility of a small particle should be equal to that of a model sphere with the same hydrodynamic radius and same net charge. For small ions, the relaxation effect (distortion of the ion atmosphere from equilibrium due to external electric and flow fields) is significant even for monovalent ions. Alternative procedures of accounting for the relaxation effect are examined. In order to account for the ionic strength dependence of a specific set of nonaromatic and aromatic anions in aqueous solution, it is necessary to include complex formation between the anion with species in the BGE. A number of possible complexes are considered. When the BGE is Tris-acetate, the most important of these involves the complex formed between anion and Tris, the principle cation in the BGE. When the BGE is sodium borate, an anion,anion (borate) complex appears to be important, at least when the organic anion is monovalent. An algorithm is developed to analyze the ionic strength dependence of the electrophoretic mobility. This algorithm is applied to two sets of organic anions from two independent research groups. [source] Cover Picture: Electrophoresis 22'2009ELECTROPHORESIS, Issue 22 2009Article first published online: 25 NOV 200 Issue no. 22 is a Special Issue on "CE and CEC Innovations" consisting of 24 important contributions in various areas of CE and CEC that are grouped into five different parts. Part I has 7 articles on novel "Stationary Phases for CEC". Part II is on "CE of Microorganisms and their Components and Interactions", and has 4 research articles. "Enantioseparations" constitute part III and has 3 research articles dealing with different chiral species and chiral CE systems. Part IV has 3 contributions on "Detection Approaches in CE". Part V is on "Capillary Coating, Affinity and Separation Media , Applications" and contains 7 research articles dealing with the separations of proteins, lipoproteins, bioactive inflammatory cytokines, inorganic and small organic anions, non-steroidal anti-inflammatory drugs, cell culture media and ancient DNA samples." [source] The effect of organic acids on base cation leaching from the forest floor under six North American tree speciesEUROPEAN JOURNAL OF SOIL SCIENCE, Issue 2 2001F. A. Dijkstra Summary Organic acidity and its degree of neutralization in the forest floor can have large consequences for base cation leaching under different tree species. We investigated the effect of organic acids on base cation leaching from the forest floor under six common North American tree species. Forest floor samples were analysed for exchangeable cations and forest floor solutions for cations, anions, simple organic acids and acidic properties. Citric and lactic acid were the most common of the acids under all species. Malonic acid was found mainly under Tsuga canadensis (hemlock) and Fagus grandifolia (beech). The organic acids were positively correlated with dissolved organic carbon and contributed significantly to the organic acidity of the solution (up to 26%). Forest floor solutions under Tsuga canadensis contained the most dissolved C and the most weak acidity among the six tree species. Under Tsuga canadensis we also found significant amounts of strong acidity caused by deposition of sulphuric acid from the atmosphere and by strong organic acids. Base cation exchange was the most important mechanism by which acidity was neutralized. Organic acids in solution from Tsuga canadensis, Fagus grandifolia, Acer rubrum (red maple) and Quercus rubra (red oak) were hardly neutralized while much more organic acidity was neutralized for Acer saccharum (sugar maple) and Fraxinus americana (white ash). We conclude that quantity, nature and degree of neutralization of organic acids differ among the different tree species. While the potential for base cation leaching with organic acids from the forest floor is greatest under Tsuga canadensis, actual leaching with organic anions is greatest under Acer saccharum and Fraxinus americana under which the forest floor contains more exchangeable cations than does the strongly acidified forest floor under Tsuga canadensis. [source] Functional Characterisation of the Volume-Sensitive Anion Channel in Rat Pancreatic ,-CellsEXPERIMENTAL PHYSIOLOGY, Issue 2 2001L. Best The whole-cell and perforated patch configurations of the patch-clamp technique were used to characterise the volume-sensitive anion channel in rat pancreatic ,-cells. The channel showed high permeability (P) relative to Cl, to extracellular monovalent organic anions (PSCN/PCll= 1.73, Pacetate/PCll= 0.39, Plactate/PCll= 0.38, Pacetoacetate/PCll= 0.32, Pglutamate/PCll= 0.28) but was less permeable to the divalent anion malate (Pmalate/PCll= 0.14). Channel activity was inhibited by a number of putative anion channel inhibitors, including extracellular ATP (10 mM), 1,9-dideoxyforskolin (100 ,M) and 4-OH tamoxifen (10 ,M). Inclusion of the catalytic subunit of protein kinase A in the pipette solution did not activate the volume-sensitive anion channel in non-swollen cells. Furthermore, addition of 8-bromoadenosine 3,,5,-cyclic monophosphate (8-BrcAMP) or forskolin failed to activate the channel in intact cells under perforated patch conditions. Addition of phorbol 12,13-dibutyrate (200 nM), either before or after cell swelling, also failed to affect channel activation. Our findings do not support the suggestion that the volume-sensitive anion channel in pancreatic ,-cells can be activated by protein kinase A. Furthermore, the ,-cell channel does not appear to be subject to regulation via protein kinase C. [source] Significance of processes in the near-stream zone on stream water acidity in a small acidified forested catchmentHYDROLOGICAL PROCESSES, Issue 2 2001Jens Fölster Abstract The near-stream zone has received increasing attention owing to its influence on stream water chemistry in general and acidity in particular. Possible processes in this zone include cation exchange, leaching of organic matter and redox reactions of sulphur compounds. In this study the influences of processes in the near-stream zone on the acidity in runoff from a small, acidified catchment in central southern Sweden were investigated. The study included sampling of groundwater, soil water and stream water along with hydrological measurements. An input,output budget for the catchment was established based on data from the International Co-operative Programme on Integrated Monitoring at this site. The catchment was heavily acidified by deposition of anthropogenic sulphur, with pH in stream water between 4·4 and 4·6. There was also no relationship between stream flow and pH, which is indicative of chronic acidification. Indications of microbial reduction of sulphate were found in some places near the stream, but the near-stream zone did not have a general impact on the sulphate concentration in discharging groundwater. The near-stream zone was a source of dissolved organic carbon (DOC) in the stream, which had a median DOC of 6·8 mg L1. The influence on stream acidity from organic anions was overshadowed by the effect of sulphate, however, except during a spring flow episode, when additional organic matter was flushed out and the sulphate-rich ground water was mixed with more diluted event water. Ion exchange was not an important process in the near-stream zone of the Kindla catchment. Different functions of the near-stream zone relating to discharge acidity are reported in the literature. In this study there was even a variation within the site. There is therefore a need for more case studies to provide a more detailed understanding of the net effects that the near-stream zone can have on stream chemistry under different circumstances. Copyright © 2001 John Wiley & Sons, Ltd. [source] Two conventional protein kinase C isoforms, , and ,I, are involved in the ATP-induced activation of volume-regulated anion channel and glutamate release in cultured astrocytesJOURNAL OF NEUROCHEMISTRY, Issue 6 2008Alena Rudkouskaya Abstract Volume-regulated anion channels (VRACs) are activated by cell swelling and are permeable to inorganic and small organic anions, including the excitatory amino acids glutamate and aspartate. In astrocytes, ATP potently enhances VRAC activity and glutamate release via a P2Y receptor-dependent mechanism. Our previous pharmacological study identified protein kinase C (PKC) as a major signaling enzyme in VRAC regulation by ATP. However, conflicting results obtained with potent PKC blockers prompted us to re-evaluate the involvement of PKC in regulation of astrocytic VRACs by using small interfering RNA (siRNA) and pharmacological inhibitors that selectively target individual PKC isoforms. In primary rat astrocyte cultures, application of hypoosmotic medium (30% reduction in osmolarity) and 20 ,M ATP synergistically increased the release of excitatory amino acids, measured with a non-metabolized analog of l -glutamate, d -[3H]aspartate. Both Go6976, the selective inhibitor of Ca2+ -sensitive PKC,, ,I/II, and ,, and MP-20-28, a cell permeable pseudosubstrate inhibitory peptide of PKC, and ,I/II, reduced the effects of ATP on d -[3H]aspartate release by ,45,55%. Similar results were obtained with a mixture of siRNAs targeting rat PKC, and ,I. Surprisingly, down-regulation of individual , and ,I PKC isozymes by siRNA was completely ineffective. These data suggest that ATP regulates VRAC activity and volume-sensitive excitatory amino acid release via cooperative activation of PKC, and ,I. [source] Impairment of blood,cerebrospinal fluid barrier properties by retrovirus-activated T lymphocytes: reduction in cerebrospinal fluid-to-blood efflux of prostaglandin E2JOURNAL OF NEUROCHEMISTRY, Issue 6 2005Seng Thuon Khuth Abstract The choroid plexus epithelium forms the interface between the blood and the CSF. In conjunction with the tight junctions restricting the paracellular pathway, polarized specific transport systems in the choroidal epithelium allow a fine regulation of CSF-borne biologically active mediators. The highly vascularized stroma delimited by the choroidal epithelium can be a reservoir for retrovirus-infected or activated immune cells. In this work, new insight in the implication of the blood,CSF barrier in neuroinfectious and inflammatory diseases is provided by using a differentiated cellular model of the choroidal epithelium, exposed to infected T lymphocytes. We demonstrate that T cells activated by a retroviral infection, but not non-infected cells, reduce the transporter-mediated CSF-to-blood efflux of organic anions, in particular that of the potent pro-inflammatory prostaglandin PGE2, via the release of soluble factors. A moderate alteration of the paracellular permeability also occurs. We identified the viral protein Tax, oxygenated free radicals, matrix-metalloproteinases and pro-inflammatory cytokines as active molecules released during the exposure of the epithelium to infected T cells. Among them, tumour necrosis factor and interleukin 1 are directly involved in the mechanism underlying the decrease in some choroidal organic anion efflux. Given the strong involvement of CSF-borne PGE2 in sickness behaviour syndrome, these data suggest that the blood,CSF barrier plays an important role in the pathophysiology of neuroinflammation and neuroinfection, via changes in the transport processes controlling the CSF biodisposition of PGE2. [source] Do multidrug resistance-associated protein-1 and -2 play any role in the elimination of estradiol-17,-glucuronide and 2,4-dinitrophenyl- S -glutathione across the blood,cerebrospinal fluid barrier?JOURNAL OF PHARMACEUTICAL SCIENCES, Issue 1 2004Young-Joo Lee Abstract The purpose of this study was to examine the role of multidrug resistance-associated protein-1 and -2 (Mrp1 and Mrp2) in the efflux transport of organic anions across the blood,cerebrospinal fluid (CSF) barrier. The CSF concentration of estradiol-17,-glucuronide (E217,G) and 2,4-dinitrophenyl- S -glutathione (DNP-SG) in the CSF after intracerebroventricular and intravenous injection were compared between wild-type and Mrp1 gene knockout mice. There was no significant difference in the apparent CSF elimination rate constants of E217,G (0.158 and 0.145 min,1) and DNP-SG (0.116 and 0.0779 min,1) between wild-type and Mrp1 knockout mice, respectively. After intravenous administration of E217,G, its brain-to-serum and CSF-to-serum concentration ratios in Mrp1 knockout mice were not significantly different from those in the wild-type. Results from in vivo and in vitro studies using Eisai hyperbilirubinemic rats, in which Mrp2 is hereditarily deficient, were similar to those using normal rats. Quantitative polymerase chain reaction (PCR) showed that the expression level of Mrp4 and Mrp5 was several times higher than that of Mrp1, whereas the expression levels of Mrp2, Mrp3, and Mrp6 were negligible or low. Therefore, Mrp4 and Mrp5 may contribute to the efflux transport of E217,G and DNP- SG from the CSF. © 2004 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 93:99,107, 2004 [source] Plant responses to drought and phosphorus deficiency: contribution of phytohormones in root-related processesJOURNAL OF PLANT NUTRITION AND SOIL SCIENCE, Issue 4 2005Lutz Wittenmayer Abstract Environmental stresses are one of the most limiting factors in agricultural productivity. A large portion of the annual crop yield is lost to pathogens (biotic stress) or the detrimental effects of abiotic-stress conditions. There are numerous reports about chemical characterization of quantitatively significant substrate fluxes in plant responses to stress factors in the root-rhizosphere system, e.g., nutrient mobilization, heavy-metal and aluminum immobilization, or establishment of plant-growth-promoting rhizobacteria (PGPR) by exudation of organic anions, phytosiderophores, or carbohydrates into the soil, respectively. The hormonal regulation of these responses is not well understood. This paper highlights this complex process, stressing the involvement of phytohormones in plant responses to drought and phosphorus deficiency as examples. Beside ethylene, abscisic acid (ABA) plays an important role in drought-stress adaptation of plants. This hormone causes morphological and chemical changes in plants, ensuring plant survival under water-limited conditions. For example, ABA induces stomata closure, reduction in leaf surface, and increase in root : shoot ratio and, thus, reduction in transpiration and increase in soil volume for water uptake. Furthermore, it supports water uptake in soil with decreasing water potential by osmotic adjustment. Suitability of hormonal parameters in the selection for improving stress resistance is discussed. Auxins, ethylene, and cytokinins are involved in morphological adaption processes to phosphorus (P) deficiency (increase in root surface, e.g., by the formation of more dense root hairs or cluster roots). Furthermore, indole-3-acetic acid increases root exudation for direct and indirect phosphorus mobilization in soil. Nevertheless, the direct use of the trait "hormone content" of a particular plant organ or tissue, for example the use of the drought-stress-induced ABA content of detached leaves in plant breeding for drought-stress-resistant crops, seems to be questionable, because this procedure does not consider the systemic principle of hormonal regulation in plants. Reaktionen von Pflanzen auf Trockenstress und Phosphormangel: Die Rolle von Phytohormonen in wurzelbezogenen Prozessen Umweltstress stellt den wesentlichsten Limitierungsfaktor für die landwirtschaftliche Produktion dar. Ein erheblicher Teil der jährlichen Ernten geht durch pathogene Organismen (biotischer Stress) oder durch die verheerende Wirkung abiotischer Stressoren verloren (v. a. Trockenstress und Nährstoffmangel). Es gibt zahlreiche Untersuchungen zur stofflichen Charakterisierung der pflanzlichen Stressreaktion an der Wurzel, z.,B. Nährstoffmobilisierung, Schadstoffimmobilisierung oder Etablierung von wachstumsfördernden Rhizobakterien durch Wurzelabscheidungen. Die hormonelle Steuerung dieser Prozesse ist bisher weniger erforscht. Der Artikel geht dieser Problematik am Beispiel von Trockenstress und Phosphormangel unter besonderer Berücksichtigung von Phytohormonen nach. Bei der Anpassung von Pflanzen an Wassermangelbedingungen spielt neben Ethylen das Phytohormon Abscisinsäure (ABA) eine wichtige Rolle. Es induziert morphologische und chemische Veränderungen in der Pflanze, die ein Überleben unter Wassermangelbedingungen ermöglichen. Beispielsweise induziert die ABA den Stomataschluss, eine Verringerung der Blattoberfläche sowie eine Erhöhung des Wurzel:Spross-Verhältnisses und bewirkt dadurch eine verringerte Transpiration und Vergrößerung des Bodenvolumens zur Erschließung von Wasservorräten. Darüber hinaus kann eine ABA-induzierte Anreicherung von osmotisch wirksamen Verbindungen zur Wasseraufnahme bei sinkendem Wasserpotential im Boden beitragen. Bei Phosphat (P)-Mangel sind vor allem Auxine, Cytokine und Ethylen an der morphologischen Anpassung der Wurzeln (Vergrößerung der Wurzeloberfläche durch verstärkte Bildung von Wurzelhaaren oder Proteoidwurzeln) beteiligt. Darüber hinaus bewirkt Indolyl-3-Essigäure eine Intensivierung der Abgabe von Wurzelabscheidungen zur direkten oder indirekten P-Mobilisierung in der Rhizosphäre. Trotzdem wird die unmittelbare Verwendung des Indikators "Hormongehalt" eines bestimmten Pflanzenorganes, beispielsweise der trockenstressinduzierte ABA-Gehalt von abgeschnittenen Blättern, für die Züchtung auf Stressresistenz als problematisch angesehen, da sie das systemische Prinzip der Hormonregulation nicht berücksichtigt. [source] Structure, function, and regulation of renal organic anion transportersMEDICINAL RESEARCH REVIEWS, Issue 6 2002Guofeng You Abstract Renal elimination of anionic drugs, xenobiotics, and toxins is necessary for the survival of mammalian species. This process is mediated by vectorial transport from blood to urine through the cooperative functions of specific transporters in the basolateral and apical membranes of the proximal tubule epithelium. The first step of this process is the extraction of organic anions from the peritubular blood plasma into proximal tubule cells largely through the organic anion transporter (OAT) pathway. Therefore, the OAT pathway is one of the major sites for body drug clearance/detoxification. As a result, it is also the site for drug,drug interaction and drug-induced nephrotoxicity. To maximize therapeutic efficacy and minimize toxicity, the structure-function relationships of OATs and their regulation must be defined. The recent cloning and identification of OATs have paved the way for such investigations. This review summarizes the available data on the general properties of OATs, focusing in particular on the recent progress made from the author's laboratory as well as from other's, on the molecular characterization of the structure-function relationships of OATs and their regulatory mechanisms. © 2002 Wiley Periodicals, Inc. Med Res Rev, 22, No. 6, 602,616, 2002; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/med.10019 [source] Fecal excretion of alcohols and organic anions in neonatal dairy calvesANIMAL SCIENCE JOURNAL, Issue 2 2009Hiroshi SATO ABSTRACT To clarify colonic fermentation during the perinatal period, 22 dairy calves less than 6 weeks old were used. They were given a milk replacer following colostrum feeding. A total 100 samples of normal feces including meconium were collected from the rectum of the calves. Fecal pH, alcohols, lactate and volatile fatty acids (VFAs) were analyzed. Higher ethanol and n -propanol concentrations were found in many fecal samples particularly in the first 2 weeks after birth, but these metabolites showed consistently lower concentrations thereafter. By contrast, higher concentrations of methanol were observed in some samples for all ages examined. Fecal VFA increased abruptly within a few days of birth, and mainly consisted of acetate and n -butyrate. During the first 2 weeks, the proportion of n -butyrate in VFAs decreased and that of propionate increased gradually. Proportions of VFAs were almost stable at 3,6 weeks of age (acetate, propionate and n -butyrate in increasing order). Higher concentrations of lactate and lower pHs were observed in the fecal samples during the first 2 weeks, and concentrations decreased thereafter. Accelerated colonic production of ethanol and n -propanol was confirmed during the early 2 weeks, in addition to organic acid fermentation as reported previously. [source] Dicopper(II) trihydroxide cyanoureate dihydrateACTA CRYSTALLOGRAPHICA SECTION C, Issue 7 2009Ann M. Chippindale The title compound, poly[[,-cyanoureato-tri-,-hydroxido-dicopper(II)] dihydrate], {[Cu2(C2H2N3O)(OH)3]·2H2O}n, is a new layered copper(II) hydroxide salt (LHS) with cyanoureate ions and water molecules in the interlayer space. The three distinct copper(II) ions have distorted octahedral geometry: one Cu (symmetry ) is coordinated to six hydroxide groups (4OH + 2OH), whilst the other two Cu atoms (symmetries and 1) are coordinated to four hydroxides and two N atoms from nitrile groups of the cyanoureate ions (4OH + 2N). The structure is held together by hydrogen-bonding interactions between the terminal ,NH2 groups and the central cyanamide N atoms of organic anions associated with neighbouring layers. [source] Effects of acute or chronic exposure to dietary organic anions on secretion of methotrexate and salicylate by Malpighian tubules of Drosophila melanogaster larvaeARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY (ELECTRONIC), Issue 3 2010Sarah Chahine Abstract The effects of dietary exposure to organic anions on the physiology of isolated Malpighian tubules and on tubule gene expression were examined using larvae of Drosophila melanogaster. Acute (24,h) or chronic (7,d) exposure to type I organic anions (fluorescein or salicylate) was associated with increased fluid secretion rates and increased fluxes of both salicylate and the type II organic anion methotrexate. By contrast, chronic exposure to dietary methotrexate was associated with increased fluid secretion rate and increased flux of methotrexate, but not salicylate. Exposure to methotrexate in the diet resulted in increases in the expression of a multidrug efflux transporter gene (MET; CG30344) in the Malpighian tubules. There were also increases in expression of genes for either a Drosophila multidrug resistance,associated protein (dMRP; CG6214) or an organic anion transporting polypeptide (OATP; CG3380), depending on the concentration of methotrexate in the diet. Exposure to salicylate in the diet was associated with an increase in expression of dMRP and with decreases of MET and OATP. Exposure to dietary salicylate or methotrexate was also associated with different patterns of expression of heat shock protein genes. The results suggest that exposure to specific type I or type II organic anions has multiple effects and results not only in increased organic anion transport but also in increased rates of inorganic ion transport, which drives osmotically-obliged fluid secretion. Increased fluid secretion may enhance secretion of organic anions by eliminating diffusive backflux from the tubule lumen to the hemolymph. © 2010 Wiley Periodicals, Inc. [source] The sulphonylurea glibenclamide inhibits multidrug resistance protein (MRP1) activity in human lung cancer cellsBRITISH JOURNAL OF PHARMACOLOGY, Issue 3 2001Léa Payen Glibenclamide, a sulphonylurea widely used for the treatment of non-insulin-dependent diabetes mellitus, has been shown to inhibit the activities of various ATP-binding cassette (ABC) transporters. In the present study, its effects towards multidrug resistance protein 1 (MRP1), an ABC efflux pump conferring multidrug resistance and handling organic anions, were investigated. Intracellular accumulation of calcein, an anionic dye substrate for MRP1, was strongly increased by glibenclamide in a dose-dependent manner in MRP1-overexpressing lung tumour GLC4/Sb30 cells through inhibition of MRP1-related calcein efflux. By contrast, glibenclamide did not alter calcein levels in parental control GLC4 cells. Another sulphonylurea, tolbutamide, was however without effect on calcein accumulation in both GLC4/Sb30 and GLC4 cells. Glibenclamide used at 12.5 ,M was, moreover, found to strongly enhance the sensitivity of GLC4/Sb30 cells towards vincristine, an anticancer drug handled by MRP1. Efflux of carboxy-2,,7,-dichlorofluorescein, an anionic dye handled by the ABC transporter MRP2 sharing numerous substrates with MRP1 and expressed at high levels in liver, was also strongly inhibited by glibenclamide in isolated rat hepatocytes. In summary, glibenclamide reversed MRP1-mediated drug resistance likely through inhibiting MRP1 activity and blocked organic anion efflux from MRP2-expressing hepatocytes. Such effects associated with the known inhibitory properties of glibenclamide towards various others ABC proteins suggest that this sulphonylurea is a general inhibitor of ABC transporters. British Journal of Pharmacology (2001) 132, 778,784; doi:10.1038/sj.bjp.0703863 [source] Multidrug resistance-associated proteins and implications in drug developmentCLINICAL AND EXPERIMENTAL PHARMACOLOGY AND PHYSIOLOGY, Issue 1 2010Ya-He Liu Summary 1.,The multidrug resistance-associated proteins (MRPs) belong to the ATP-binding cassette superfamily (ABCC family) of transporters that are expressed differentially in the liver, kidney, intestine and blood,brain barrier. There are nine human MRPs that transport a structurally diverse array of endo- and xenobiotics as well as their conjugates. 2.,Multidrug resistance-associated protein 1 can be distinguished from MRP2 and MRP3 by its higher affinity for leukotriene C4. Unlike MRP1, MRP2 functions in the extrusion of endogenous organic anions, such as bilirubin glucuronide and certain anticancer agents. In addition to the transport of glutathione and glucuronate conjugates, MRP3 has the additional capability of mediating the transport of monoanionic bile acids. 3.,Both MRP4 and MRP5 are able to mediate the transport of cyclic nucleotides and confer resistance to certain antiviral and anticancer nucleotide analogues. Hereditary deficiency of MRP6 results in pseudoxanthoma elasticum. In the body, MRP6 is involved in the transport of glutathione conjugates and the cyclic pentapeptide BQ123. 4.,Various MRPs show considerable differences in tissue distribution, substrate specificity and proposed physiological function. These proteins play a role in drug disposition and excretion and thus are implicated in drug toxicity and drug interactions. Increased efflux of natural product anticancer drugs and other anticancer agents mediated by MRPs from cancer cells is associated with tumour resistance. 5.,A better understanding of the function and regulating mechanisms of MRPs could help minimize and avoid drug toxicity and unfavourable drug,drug interactions, as well as help overcome drug resistance. [source] |