Organelles

Distribution by Scientific Domains
Distribution within Life Sciences

Kinds of Organelles

  • acidic organelle
  • cell organelle
  • cellular organelle
  • cytoplasmic organelle
  • eukaryotic organelle
  • intracellular organelle
  • other organelle
  • secretory organelle
  • specific organelle
  • subcellular organelle


  • Selected Abstracts


    Ni2+ induces changes in the morphology of vacuoles, mitochondria and microtubules in Paxillus involutus cells

    NEW PHYTOLOGIST, Issue 4 2006
    Sandra Tuszy
    Summary ,,Organelles of ectomycorrhizal fungi are known to respond to changes in the extracellular environment. The response of vacuoles, mitochondria and microtubules to short-term nickel (Ni2+) exposure were investigated in hyphal tip cells of a Paxillus involutus from a heavy metal-rich soil. ,,Vacuoles, mitochondria and microtubules were labelled with Oregon Green® 488 carboxylic acid diacetate, 3,3,-dihexyloxacarbocyanine iodide (DiOC6(3)) and anti-,-tubulin antibodies, respectively; hyphae were treated with NiSO4 in the range of 0,1 mmol l,1 and examined microscopically. ,,Untreated hyphal tip cells contained tubular vacuole and mitochondrial networks. Ni2+ caused loss of organelle tubularity and severe microtubule disruption that were exposure-time and concentration dependent. Fine tubular vacuoles thickened and eventually became spherical in some hyphae, tubular mitochondria fragmented and microtubules shortened and aggregated into patches in most hyphae. Tubular vacuoles reformed on NiSO4 removal and tubular mitochondria in the presence of NiSO4 suggesting cellular detoxification. ,,These results demonstrate that Ni2+ induces changes in organelle and microtubule morphology. Recovery of tubular organelles to pretreatment morphology after Ni2+ exposure suggests cellular detoxification of the metal ion. [source]


    Reproducibility, sensitivity and compatibility of the ProteoExtract® subcellular fractionation kit with saturation labeling of laser microdissected tissues

    PROTEINS: STRUCTURE, FUNCTION AND BIOINFORMATICS, Issue 16 2009
    Sonal Sawhney
    Abstract Laser microdissection (LMD), a method of isolating specific microscopic regions of interest from a tissue that has been sectioned, is increasingly being applied to study proteomics. LMD generally requires tissues to be fixed and histologically stained, which can interfere with protein recovery and subsequent analysis. We evaluated the compatibility and reproducibility of protein extractions from laser microdissected human colon mucosa using a subcellular fractionation kit (ProteoExtract®, Calbiochem). Four protein fractions corresponding to cytosol (fraction 1), membrane/organelle (fraction 2), nucleus (fraction 3) and cytoskeleton (fraction 4) were extracted, saturation labeled with Cy5 and 5,,g separated by both acidic (pH 4,7) and basic (pH 6,11) 2-DE. The histological stains and fixation required for LMD did not interfere with the accurate subcellular fractionation of proteins into their predicted fraction. The combination of subcellular fractionation and saturation CyDye labeling produced very well resolved, distinct protein spot maps by 2-DE for each of the subcellular fractions, and the total number of protein spots consistently resolved between three independent extractions for each fraction was 893, 1128, 1245 and 1577 for fractions 1, 2, 3 and 4, respectively. Although significant carryover of protein did occur between fractions, this carryover was consistent between experiments, and very low inter-experimental variation was observed. In summary, subcellular fractionation kits are very compatible with saturation labeling DIGE of LMD tissues and provide greater coverage of proteins from very small amounts of microdissected material. [source]


    Regulation of skeletal muscle mitochondrial function: genes to proteins

    ACTA PHYSIOLOGICA, Issue 4 2010
    I. R. Lanza
    Abstract The impact of ageing on mitochondrial function and the deterministic role of mitochondria on senescence continue to be topics of vigorous debate. Many studies report that skeletal muscle mitochondrial content and function are reduced with ageing and metabolic diseases associated with insulin resistance. However, an accumulating body of literature suggests that physical inactivity typical of ageing may be a more important determinant of mitochondrial function than chronological age, per se. Reports of age-related declines in mitochondrial function have spawned a vast body of literature devoted to understanding the underlying mechanisms. These mechanisms include decreased abundance of mtDNA, reduced mRNA levels, as well as decreased synthesis and expression of mitochondrial proteins, ultimately resulting in decreased function of the whole organelle. Effective therapies to prevent, reverse or delay the onset of the aforementioned mitochondrial changes, regardless of their inevitability or precise underlying causes, require an intimate understanding of the processes that regulate mitochondrial biogenesis, which necessitates the coordinated regulation of nuclear and mitochondrial genomes. Herein we review the current thinking on regulation of mitochondrial biogenesis by transcription factors and transcriptional co-activators and the role of hormones and exercise in initiating this process. We review how exercise may help preserve mitochondrial content and functionality across the lifespan, and how physical inactivity is emerging as a major determinant of many age-associated changes at the level of the mitochondrion. We also review evidence that some mitochondrial changes with ageing are independent of exercise or physical activity and appear to be inevitable consequences of old age. [source]


    The roles of actin cytoskeleton and microtubules for membrane recycling of a food vacuole in Tetrahymena thermophila

    CYTOSKELETON, Issue 7 2009
    Maki Sugita
    Abstract Phagocytosis is a fundamental cellular event for the uptake of nutrients from the environment in several kinds of eukaryote. Most ciliates egest waste and undigested materials in food vacuoles (FVs) through a cytoproct, which is a specific organelle for defecation. It is considered that FV egestion is initiated by fusion between the FV membrane and plasma membrane in a cytoproct and completed with retrieval of the membrane into a cytoplasmic space. In addition, electron microscopy indicated that microfilaments might be involved in the recycling process of the FV membrane in ciliates over 30 years ago; however, there is no conclusive evidence. Here we demonstrated actin organization on FV near a cytoproct in Tetrahymena thermophila by using a marker for a cytoproct. Moreover, it was revealed that cells treated with actin cytoskeletal inhibitor, Latrunculin B, might be suppressed for membrane retrieval in a cytoproct following FV egestion. On the other hand, the actin structures, likely to be the site of membrane retrieval, were frequently observed in the cells treated with cytoplasmic microtubules inhibitor, Nocodazole. We concluded that actin filaments were probably required for recycling of the FV membrane in a cytoproct although the role was not essential for FV egestion. In addition, it was possible that microtubules might be involved in transportation of recycling vesicles of FV coated with F-actin. Cell Motil. Cytoskeleton 2009. © 2009 Wiley-Liss, Inc. [source]


    Evolution and persistence of the cilium

    CYTOSKELETON, Issue 12 2007
    Peter Satir
    Abstract The origin of cilia, a fundamental eukaryotic organelle, not present in prokaryotes, poses many problems, including the origins of motility and sensory function, the origins of nine-fold symmetry, of basal bodies, and of transport and selective mechanisms involved in ciliogenesis. We propose the basis of ciliary origin to be a self-assembly RNA enveloped virus that contains unique tubulin and tektin precursors. The virus becomes the centriole and basal body, which would account for the self-assembly and self-replicative properties of these organelles, in contrast to previous proposals of spirochaete origin or endogenous differentiation, which do not readily account for the centriole or its properties. The viral envelope evolves into a sensory bud. The host cell supplies the transport machinery and molecular motors to construct the axoneme. Polymerization of cytoplasmic microtubules in the 9 + 0 axoneme completes the 9 + 2 pattern. Cell Motil. Cytoskeleton 2007. © 2007 Wiley-Liss, Inc. [source]


    Ca2+ -dependent in vitro contractility of a precipitate isolated from an extract of the heliozoon Actinophrys sol

    CYTOSKELETON, Issue 2 2006
    Mikihiko Arikawa
    Abstract Contraction of axopodia in actinophrid heliozoons (protozoa) is induced by a unique contractile structure, the "contractile tubules structure (CTS)". We have previously shown that a cell homogenate of the heliozoon Actinophrys sol yields a precipitate on addition of Ca2+ that is mainly composed of filamentous structures morphologically identical to the CTS. In this study, to further characterize the nature of the CTS in vitro, biochemical and physiological properties of the precipitate were examined. SDS-PAGE analysis showed that the Ca2+ -induced precipitate was composed of many proteins, and that no proteins in the precipitate showed any detectable changes in electrophoretic mobility on addition of Ca2+. Addition of extraneous proteins such as bovine serum albumin to the cell homogenate resulted in cosedimentation of the proteins with the Ca2+ -induced precipitate, suggesting that the CTS has a high affinity for other proteins that are not related to precipitate formation. Appearance and disappearance of the precipitate were repeatedly induced by alternating addition of Ca2+ and EGTA, and its protein composition remained unchanged even after repeated cycles. When adhered to a glass surface, the precipitate showed Ca2+ -dependent contractility with a threshold of 10,100 nM, and this contractility was not inhibited by colchicine or cytochalasin B. The precipitate repeatedly contracted and relaxed with successive addition and removal of Ca2+, indicating that the contraction was controlled by Ca2+ alone with no need for any other energy supply. From our characterization of the precipitate, we concluded that its Ca2+ -dependent formation and contraction are associated with the unique contractile organelle, the "contractile tubules structure". Cell Motil. Cytoskeleton 2006. © 2005 Wiley-Liss, Inc. [source]


    Deletion of mdmB impairs mitochondrial distribution and morphology in Aspergillus nidulans

    CYTOSKELETON, Issue 2 2003
    Katrin V. Koch
    Abstract Mitochondria form a dynamic network of interconnected tubes in the cells of Saccharomyces cerevisiae or filamentous fungi such as Aspergillus nidulans,Neurospora crassa, or Podospora anserina. The dynamics depends on the separation of mitochondrial fragments, their movement throughout the cell, and their subsequent fusion with the other parts of the organelle. Interestingly, the microtubule network is required for the distribution in N. crassa and S. pombe, while S. cerevisiae and A. nidulans appear to use the actin cytoskeleton. We studied a homologue of S. cerevisiae Mdm10 in A. nidulans, and named it MdmB. The open reading frame is disrupted by two introns, one of which is conserved in mdm10 of P. anserina. The MdmB protein consists of 428 amino acids with a predicted molecular mass of 46.5 kDa. MdmB shares 26% identical amino acids to Mdm10 from S. cerevisiae, 35% to N. crassa, and 32% to the P. anserina homologue. A MdmB-GFP fusion protein co-localized evenly distributed along mitochondria. Extraction of the protein was only possible after treatment with a non-ionic and an ionic detergent (1% Triton X-100; 0.5% SDS) suggesting that MdmB was tightly bound to the mitochondrial membrane fraction. Deletion of the gene in A. nidulans affected mitochondrial morphology and distribution at 20°C but not at 37°C. mdmB deletion cells contained two populations of mitochondria at lower temperature, the normal tubular network plus some giant, non-motile mitochondria. Cell Motil. Cytoskeleton 55:114,124, 2003. © 2003 Wiley-Liss, Inc. [source]


    Dynamics of the endoplasmic reticulum during early development of Drosophila melanogaster

    CYTOSKELETON, Issue 3 2003
    Yves Bobinnec
    Abstract In this study, we analyze for the first time endoplasmic reticulum (ER) dynamics and organization during oogenesis and embryonic divisions of Drosophila melanogaster using a Protein Disulfide Isomerase (PDI) GFP chimera protein. An accumulation of ER material into the oocyte takes place during the early steps of oogenesis. The compact organization of ER structures undergoes a transition to an expanded reticular network at fertilization. At the syncytial stage, this network connects to the nuclear envelope as each nucleus divides. Time-lapse confocal microscopy on PDI transgenic embryos allowed us to characterize a rapid redistribution of the ER during the mitotic phases. The ER network is massively recruited to the spindle poles in prophase. During metaphase most of the ER remains concentrated at the spindle poles and shortly thereafter forms several layers of membranes along the ruptured nuclear envelope. Later, during telophase an accumulation of ER material occurs at the spindle equator. We also analyzed the subcellular organization of the ER network at the ultrastructural level, allowing us to corroborate the results from confocal microscopy studies. This dynamic redistribution of ER suggests an unexpected regulatory function for this organelle during mitosis. Cell Motil. Cytoskeleton 54:217,225, 2003. © 2003 Wiley-Liss, Inc. [source]


    Norman K. Wessells: A life in science

    DEVELOPMENTAL DYNAMICS, Issue 2 2005
    Kate F. Barald
    "In its triple role as locomotory organelle, as a site of deposition of new surface material for the elongating axon, and a source of microspikes (sensory probes), the growth cone becomes the key to axon elongation" Yamada et al. (1971) [source]


    Oxidative damage of retinal pigment epithelial cells and age-related macular degeneration

    DRUG DEVELOPMENT RESEARCH, Issue 5 2007
    Suofu Qin
    Abstract Damage to the retinal pigment epithelial (RPE) cells is an early and crucial event in the molecular pathways leading to clinically relevant age-related macular degeneration (AMD) changes. Oxidative stress, the major environmental risk factor for atrophic AMD, causes RPE injury that results in a chronic inflammatory response, drusen formation, and RPE atrophy. RPE degeneration ultimately leads to a progressive irreversible degeneration of photoreceptors. In vitro studies show that oxidant-treated RPE cells undergo apoptosis, a possible mechanism by which RPE cells are lost during the early phase of atrophic AMD. The main target of oxidative injury appears to be mitochondria, an organelle known to accumulate genomic damage during aging. Addition of GSH, the most abundant intracellular thiol antioxidant, protects RPE cells from oxidant-induced apoptosis. Similar protection occurs with dietary enzyme inducers that increase GSH synthesis. In addition, enhancing survival signaling preserves RPE cells under oxidative stress. These results indicate that therapeutic or nutritional intervention to enhance the antioxidant capacity and survival signaling of RPE may provide an effective way to prevent or treat AMD. This review describes major molecular and cellular events leading to RPE death, and presents currently used and new experimental, forthcoming therapeutic strategies. Drug Dev Res 68:213,225, 2007. © 2007 Wiley-Liss, Inc. [source]


    CE analysis of the acidic organelles of a single cell

    ELECTROPHORESIS, Issue 14 2007
    Yun Chen
    Abstract The properties of organelles within a cell have been shown to be highly heterogeneous. Until now, it has been unclear just how much of this heterogeneity is endemic to the organelle subpopulations themselves and how much is actually due to stochastic cellular noise. An attractive approach for investigating the origins of heterogeneity among the organelles of a single cell is CE with LIF detection (CE-LIF). As a proof of principle, in this report we optimize and use a single cell CE-LIF method to investigate the properties of endocytic (acidic) organelles. Our results show that the properties of individual acidic organelles containing Alexa Fluor® 488 Dextran suggest that there are two groups of CCRF-CEM cells: a group with a high dextran content per cell, and a group with a low dextran content per cell. Furthermore, the individual organelle measurements of the single cells allow us to compare in each group the distributions of doxorubicin content per acidic organelle and electrophoretic mobilities of these organelles. [source]


    Separation of nuclear protein complexes by blue native polyacrylamide gel electrophoresis

    ELECTROPHORESIS, Issue 7 2006
    Zora Nováková
    Abstract The nucleus is a highly structured organelle with distinct compartmentalization of specific functions. To understand the functions of these nuclear compartments, detailed description of protein complexes which form these structures is of crucial importance. We explored therefore the potential of blue native PAGE (BN-PAGE) method for the separation of nuclear protein complexes. We focused on (i),solubility and stability of nuclear complexes under conditions prerequisite for the separation by BN-PAGE, (ii),improved separation of native nuclear protein complexes using 2-D colorless native/blue native PAGE (CN-/BN-PAGE), and (iii),mass spectrometric analysis of protein complexes which were isolated directly from native 1-D or from 2-D CN/BN-PAGE gels. The suitability of BN-PAGE for nuclear proteomic research is demonstrated by the successful separation of polymerase,I and polymerase,II complexes, and by mass spectrometric determination of U1 small nuclear ribonucleoprotein particle composition. Moreover, practical advice for sample preparation is provided. [source]


    A brief overview of mechanisms of mitochondrial toxicity from NRTIs,

    ENVIRONMENTAL AND MOLECULAR MUTAGENESIS, Issue 3-4 2007
    James J. Kohler
    Abstract Nucleoside reverse transcriptase inhibitors (NRTIs) in combinations with other antiretrovirals (highly active antiretroviral therapy, HAART) are the cornerstones of AIDS therapy, turning HIV infection into a manageable clinical entity. Despite the initial positive impact of NRTIs, therapeutic experience revealed serious side effects that appeared to originate in the mitochondria and which ultimately manifested as dysfunction of that organelle. It may be reasonable to consider that as the AIDS epidemic continues and as survival with HIV infection is prolonged by treatment with HAART, long-term side effects of NRTIs may become increasingly common. This consideration may be underscored in children who are born to HIV-infected mothers who received NRTI therapy in utero during gestation. The long-term effect of that NRTI exposure in utero is not clear yet. This review examines some proposed mechanisms of NRTI mitochondrial toxicity, including genetic predisposition, defects in mitochondria DNA replication, the encompassing "DNA pol-, hypothesis," the relationship between mitochondrial nucleotide and NRTI pools, mitochondrial DNA mutation and dysfunction, and oxidative stresses related to HIV infection and NRTIs. Mechanisms of mitochondrial toxicity are reviewed with respect to key cell biological, pathological, and pharmacological events. Environ. Mol. Mutagen., 2006. © 2006 Wiley-Liss, Inc. [source]


    The fuzzy border between a cell and an organelle

    ENVIRONMENTAL MICROBIOLOGY, Issue 12 2006
    Michael Y. Galperin
    First page of article [source]


    CYTONUCLEAR INTERACTIONS CAN FAVOR THE EVOLUTION OF GENOMIC IMPRINTING

    EVOLUTION, Issue 5 2009
    Jason B. Wolf
    Interactions between cytoplasmic (generally organelle) and nuclear genomes may be relatively common and could potentially have major fitness consequences. As in the case of within-genome epistasis, this cytonuclear epistasis can favor the evolutionary coadaptation of high-fitness combinations of nuclear and cytoplasmic alleles. Because cytoplasmic factors are generally uniparentally inherited, the cytoplasmic genome is inherited along with only one of the nuclear haplotypes, and therefore, coadaptation is expected to evolve through the interaction of these coinherited (usually maternally inherited) genomes. Here I show that, as a result of this coinheritance of the two genomes, cytonuclear epistasis can favor the evolution of genomic imprinting such that, when the cytoplasmic factor is maternally inherited, selection favors maternal expression of the nuclear locus and when the factor is paternally inherited selection favors paternal expression. Genomic imprinting evolves in this model because it leads to a pattern of gene expression in the nuclear haplotype that is coadapted with (i.e., adaptively coordinated with) gene expression in the coinherited cytoplasmic genome. [source]


    CYTO-NUCLEAR EPISTASIS: TWO-LOCUS RANDOM GENETIC DRIFT IN HERMAPHRODITIC AND DIOECIOUS SPECIES

    EVOLUTION, Issue 4 2006
    Michael J. Wade
    Abstract We report the findings of our theoretical investigation of the effect of random genetic drift on the covariance of identity-by-descent (ibd) of nuclear and cytoplasmic genes. The covariance in ibd measures of the degree to which cyto-nuclear gene combinations are heritable, that is, transmitted together from parents to offspring. We show how the mating system affects the covariance of ibd, a potentially important aspect of host-pathogen or host-symbiont coevolution. The magnitude of this covariance influences the degree to which the evolution of apparently neutral cytoplasmic genes, often used in molecular phylogenetics, might be influenced by selection acting on unlinked nuclear genes. To the extent that cyto-nuclear gene combinations are inherited together, genomic conflict is mitigated and intergenomic transfer it facilitated, because genes in both organelle and nuclear genomes share the same evolutionary fate. The covariance of ibd also affects the rate at which cyto-nuclear epistatic variance is converted to additive variance necessary for a response to selection. We find that conversion is biased in species with separate sexes, so that the increment of additive variance added to the nuclear genome exceeds that added to the cytoplasmic genome. As a result, the host might have an adaptive advantage in a coevolutionary arms race with vertically (maternally) transmitted pathogens. Similarly, the nuclear genome could be a source of compensatory mutations for its organellar genomes, as occurs in cytoplasmic male sterility in some plant species. We also discuss the possibility that adaptive cytoplasmic elements, such as favorable mitochondrial mutations or endosymbionts (e.g., Wolbachia), have the potential to release heritable nuclear variation as they sweep through a host population, supporting the view that cytoplasmic introgression plays an important role in adaptation and speciation. [source]


    Structure, regulation and evolution of Nox-family NADPH oxidases that produce reactive oxygen species

    FEBS JOURNAL, Issue 13 2008
    Hideki Sumimoto
    NADPH oxidases of the Nox family exist in various supergroups of eukaryotes but not in prokaryotes, and play crucial roles in a variety of biological processes, such as host defense, signal transduction, and hormone synthesis. In conjunction with NADPH oxidation, Nox enzymes reduce molecular oxygen to superoxide as a primary product, and this is further converted to various reactive oxygen species. The electron-transferring system in Nox is composed of the C-terminal cytoplasmic region homologous to the prokaryotic (and organelle) enzyme ferredoxin reductase and the N-terminal six transmembrane segments containing two hemes, a structure similar to that of cytochrome b of the mitochondrial bc1 complex. During the course of eukaryote evolution, Nox enzymes have developed regulatory mechanisms, depending on their functions, by inserting a regulatory domain (or motif) into their own sequences or by obtaining a tightly associated protein as a regulatory subunit. For example, one to four Ca2+ -binding EF-hand motifs are present at the N-termini in several subfamilies, such as the respiratory burst oxidase homolog (Rboh) subfamily in land plants (the supergroup Plantae), the NoxC subfamily in social amoebae (the Amoebozoa), and the Nox5 and dual oxidase (Duox) subfamilies in animals (the Opisthokonta), whereas an SH3 domain is inserted into the ferredoxin,NADP+ reductase region of two Nox enzymes in Naegleria gruberi, a unicellular organism that belongs to the supergroup Excavata. Members of the Nox1,4 subfamily in animals form a stable heterodimer with the membrane protein p22phox, which functions as a docking site for the SH3 domain-containing regulatory proteins p47phox, p67phox, and p40phox; the small GTPase Rac binds to p67phox (or its homologous protein), which serves as a switch for Nox activation. Similarly, Rac activates the fungal NoxA via binding to the p67phox -like protein Nox regulator (NoxR). In plants, on the other hand, this GTPase directly interacts with the N-terminus of Rboh, leading to superoxide production. Here I describe the regulation of Nox-family oxidases on the basis of three-dimensional structures and evolutionary conservation. [source]


    Folding and turnover of human iron regulatory protein 1 depend on its subcellular localization

    FEBS JOURNAL, Issue 4 2007
    Alain Martelli
    Aconitases are iron,sulfur hydrolyases catalysing the interconversion of citrate and isocitrate in a wide variety of organisms. Eukaryotic aconitases have been assigned additional roles, as in the case of the metazoan dual activity cytosolic aconitase,iron regulatory protein 1 (IRP1). This human protein was produced in yeast mitochondria to probe IRP1 folding in this organelle where iron,sulfur synthesis originates. The behaviour of human IRP1 was compared with that of genuine mitochondrial (yeast or human) aconitases. All enzymes were functional in yeast mitochondria, but IRP1 was found to form dense particles as detected by electron microscopy. MS analysis of purified inclusion bodies evidenced the presence of human IRP1 and ,-ketoglutarate dehydrogenase complex component 1 (KGD1), one of the subunits of ,-ketoglutarate dehydrogenase. KGD1 triggered formation of the mitochondrial aggregates, because the latter were absent in a KGD1, mutant, but it did not efficiently do so in the cytosol. Despite the iron-binding capacity of IRP1 and the readily synthesis of iron,sulfur clusters in mitochondria, the dense particles were not iron-rich, as indicated by elemental analysis of purified mitochondria. The data show that proper folding of dual activity IRP1-cytosolic aconitase is deficient in mitochondria, in contrast to genuine mitochondrial aconitases. Furthermore, efficient clearance of the aggregated IRP1,KGD1 complex does not occur in the organelle, which emphasizes the role of molecular interactions in determining the fate of IRP1. Thus, proper folding of human IRP1 strongly depends on its cellular environment, in contrast to other members of the aconitase family. [source]


    Intracellular pH homeostasis in the filamentous fungus Aspergillus niger

    FEBS JOURNAL, Issue 14 2002
    Stephan J. A. Hesse
    Intracellular pH homeostasis in the filamentous fungus Aspergillus niger was measured in real time by 31P NMR during perfusion in the NMR tube of fungal biomass immobilized in Ca2+ -alginate beads. The fungus maintained constant cytoplasmic pH (pHcyt) and vacuolar pH (pHvac) values of 7.6 and 6.2, respectively, when the extracellular pH (pHex) was varied between 1.5 and 7.0 in the presence of citrate. Intracellular metabolism did not collapse until a ,pH over the cytoplasmic membrane of 6.6,6.7 was reached (pHex 0.7,0.8). Maintenance of these large pH differences was possible without increased respiration compared to pHex 5.8. Perfusion in the presence of various hexoses and pentoses (pHex 5.8) revealed that the magnitude of ,pH values over the cytoplasmic and vacuolar membrane could be linked to the carbon catabolite repressing properties of the carbon source. Also, larger ,pH values coincided with a higher degree of respiration and increased accumulation of polyphosphate. Addition of protonophore (carbonyl cyanide m -chlorophenylhydrazone, CCCP) to the perfusion buffer led to decreased ATP levels, increased respiration and a partial (1 µm CCCP), transient (2 µm CCCP) or permanent (10 µm CCCP) collapse of the vacuolar membrane ,pH. Nonlethal levels of the metabolic inhibitor azide (N3,, 0.1 mm) caused a transient decrease in pHcyt that was closely paralleled by a transient vacuolar acidification. Vacuolar H+ influx in response to cytoplasmic acidification, also observed during extreme medium acidification, indicates a role in pH homeostasis for this organelle. Finally, 31P NMR spectra of citric acid producing A. niger mycelium showed that despite a combination of low pHex (1.8) and a high acid-secreting capacity, pHcyt and pHvac values were still well maintained (pH 7.5 and 6.4, respectively). [source]


    Uncoupling proteins 2 and 3 interact with members of the 14.3.3 family

    FEBS JOURNAL, Issue 9 2000
    Benoit Pierrat
    Uncoupling proteins (UCPs) are members of the superfamily of the mitochondrial anion carrier proteins (MATP). Localized in the inner membrane of the organelle, they are postulated to be regulators of mitochondrial uncoupling. UCP2 and 3 may play an important role in the regulation of thermogenesis and, thus, on the resting metabolic rate in humans. To identify interacting proteins that may be involved in the regulation of the activity of UCPs, the yeast two-hybrid system was applied. Segments of hUCP2 containing the hydrophilic loops facing the intermembrane space, or combinations of these, were used to screen an adipocyte activation domain (AD) fusion library. The 14.3.3 protein isoforms ,, ,, , were identified as possible interacting partners of hUCP2. Screening of a human skeletal muscle AD fusion library, on the other hand, yielded several clones all of them encoding the , isoform of the 14.3.3 family. Mapping experiments further revealed that all these 14.3.3 proteins interact specifically with the C-terminal intermembrane space domain of both hUCP2 and hUCP3 whereas no interactions could be detected with the C-terminal part of hUCP1. Direct interaction between UCP3 and 14.3.3 , could be demonstrated after in vitro translation by coimmunoprecipitation. When coexpressed in a heterologous yeast system, 14.3.3 proteins potentiated the inhibitory effect of UCP3 overexpression on cell growth. These findings suggest that 14.3.3 proteins could be involved in the targeting of UCPs to the mitochondria. [source]


    Preserving organelle vitality: peroxisomal quality control mechanisms in yeast

    FEMS YEAST RESEARCH, Issue 6 2009
    Eda Bener Aksam
    Abstract Cellular proteins and organelles such as peroxisomes are under continuous quality control. Upon synthesis in the cytosol, peroxisomal proteins are kept in an import-competent state by chaperones or specific proteins with an analogous function to prevent degradation by the ubiquitin,proteasome system. During protein translocation into the organelle, the peroxisomal targeting signal receptors (Pex5, Pex20) are also continuously undergoing quality control to enable efficient functioning of the translocon (RADAR pathway). Even upon maturation of peroxisomes, matrix enzymes and peroxisomal membranes remain subjected to quality control. As a result of their oxidative metabolism, peroxisomes are producers of reactive oxygen species (ROS), which may damage proteins and lipids. To counteract ROS-induced damage, yeast peroxisomes contain two important antioxidant enzymes: catalase and an organelle-specific peroxiredoxin. Additionally, a Lon-type protease has recently been identified in the peroxisomal matrix, which is capable of degrading nonfunctional proteins. Finally, cellular housekeeping processes keep track of the functioning of peroxisomes so that dysfunctional organelles can be quickly removed via selective autophagy (pexophagy). This review provides an overview of the major processes involved in quality control of yeast peroxisomes. [source]


    Mitochondrial preprotein translocases as dynamic molecular machines

    FEMS YEAST RESEARCH, Issue 6 2006
    Martin Van Der Laan
    Abstract Proteomic studies have demonstrated that yeast mitochondria contain roughly 1000 different proteins. Only eight of these proteins are encoded by the mitochondrial genome and are synthesized on mitochondrial ribosomes. The remaining 99% of mitochondrial precursors are encoded within the nuclear genome and after their synthesis on cytosolic ribosomes must be imported into the organelle. Targeting of these proteins to mitochondria and their import into one of the four mitochondrial subcompartments , outer membrane, intermembrane space (IMS), inner membrane and matrix , requires various membrane-embedded protein translocases, as well as numerous chaperones and cochaperones in the aqueous compartments. During the last years, several novel protein components involved in the import and assembly of mitochondrial proteins have been identified. The picture that emerges from these exciting new findings is that of highly dynamic import machineries, rather than of regulated, but static protein complexes. In this review, we will give an overview on the recent progress in our understanding of mitochondrial protein import. We will focus on the presequence translocase of the inner mitochondrial membrane, the TIM23 complex and the presequence translocase-associated motor, the PAM complex. These two molecular machineries mediate the multistep import of preproteins with cleavable N-terminal signal sequences into the matrix or inner membrane of mitochondria. [source]


    Glucose-induced and nitrogen-starvation-induced peroxisome degradation are distinct processes in Hansenula polymorpha that involve both common and unique genes

    FEMS YEAST RESEARCH, Issue 1 2001
    Anna Rita Bellu
    Abstract In the methylotrophic yeast Hansenula polymorpha non-selective autophagy, induced by nitrogen starvation, results in the turnover of cytoplasmic components, including peroxisomes. We show that the uptake of these components occurs by invagination of the vacuolar membrane without their prior sequestration and thus differs from the mechanism described for bakers yeast. A selective mode of autophagy in H. polymorpha, namely glucose-induced peroxisome degradation, involves sequestration of individual peroxisomes tagged for degradation by membrane layers that subsequently fuse with the vacuole where the organelle is digested. H. polymorpha pdd mutants are blocked in selective peroxisome degradation. We observed that pdd1-201 is also impaired in non-selective autophagy, whereas this process still normally functions in pdd2-4. These findings suggest that mechanistically distinct processes as selective and non-selective autophagy involve common but also unique genes. [source]


    Proteome analysis of human nuclear insoluble fractions

    GENES TO CELLS, Issue 8 2009
    Hideaki Takata
    The interphase nucleus is a highly ordered and compartmentalized organelle. Little is known regarding what elaborate mechanisms might exist to explain these properties of the nucleus. Also unresolved is whether some architectural components might facilitate the formation of functional intranuclear compartments or higher order chromatin structure. As the first step to address these questions, we performed an in-depth proteome analysis of nuclear insoluble fractions of human HeLa-S3 cells prepared by two different approaches: a high-salt/detergent/nuclease-resistant fraction and a lithium 3,5-diiodosalicylate/nuclease-resistant fraction. Proteins of the fractions were analyzed by liquid chromatography electrospray ionization tandem mass spectrometry, identifying 333 and 330 proteins from each fraction respectively. Among the insoluble nuclear proteins, we identified 37 hitherto unknown or functionally uncharacterized proteins. The RNA recognition motif, WD40 repeats, HEAT repeats and the SAP domain were often found in these identified proteins. The subcellular distribution of selected proteins, including DEK protein and SON protein, demonstrated their novel associations with nuclear insoluble materials, corroborating our MS-based analysis. This study establishes a comprehensive catalog of the nuclear insoluble proteins in human cells. Further functional analysis of the proteins identified in our study will significantly improve our understanding of the dynamic organization of the interphase nucleus. [source]


    Vacuolar membrane dynamics revealed by GFP-AtVam3 fusion protein

    GENES TO CELLS, Issue 7 2002
    Tomohiro Uemura
    Background: The plant vacuole is a multifunctional organelle that has various physiological functions. The vacuole dynamically changes its function and shape, dependent on developmental and physiological conditions. Our current understanding of the dynamic processes of vacuolar morphogenesis has suffered from the lack of a marker for observing these processes in living cells. Results: We have developed transgenic Arabidopsis thaliana expressing a vacuolar syntaxin-related molecule (AtVam3/SYP22) fused with green fluorescent protein (GFP). Observations using confocal laser scanning microscopy demonstrated that the plant vacuole contained a dynamic membrane system that underwent a complex architectural remodelling. Three-dimensional reconstitution and time-lapse analysis of GFP-fluorescence images revealed that cylindrical and sheet-like structures were present in the vacuolar lumen and were moving dynamically. The movement, but not the structure itself, was abolished by cytochalasin D, an inhibitor of actin polymerization. This moving structure, which sometimes penetrated through the vacuolar lumen, possessed a dynamic membrane architecture similar to the previously recognized ,transvacuolar strand.' Conclusion: We propose two possible models for the formation of the vacuolar lumenal structure. Membrane structures including protruding tubules and reticular networks have recently been recognized in many other organelles, and may be actively involved in intra- and/or inter-organelle signalling. [source]


    Inhibition of glutamine transport into mitochondria protects astrocytes from ammonia toxicity

    GLIA, Issue 8 2007
    V. B. R. Pichili
    Abstract Hepatic encephalopathy (HE) is a major neurological complication that occurs in the setting of severe liver failure. Ammonia is a key neurotoxin implicated in this condition, and astrocytes are the principal neural cells histopathologically and functionally affected. Although the mechanism by which ammonia causes astrocyte dysfunction is incompletely understood, glutamine, a by-product of ammonia metabolism, has been strongly implicated in many of the deleterious effects of ammonia on astrocytes. Inhibiting mitochondrial glutamine hydrolysis in astrocytes mitigates many of the toxic effects of ammonia, suggesting the involvement of mitochondrial glutamine metabolism in the mechanism of ammonia neurotoxicity. To determine whether mitochondriaare indeed the organelle where glutamine exerts its toxic effects, we examined the effect of L -histidine, an inhibitor of mitochondrial glutamine transport, on ammonia-mediated astrocyte defects. Treatment of cultured astrocytes with L -histidine completely blocked or significantly attenuated ammonia-induced reactive oxygen species production, cell swelling, mitochondrial permeability transition, and loss of ATP. These findings implicate mitochondrial glutamine transport in the mechanism of ammonia neurotoxicity. © 2007 Wiley-Liss, Inc. [source]


    Natural killer cell cytotoxicity: how do they pull the trigger?

    IMMUNOLOGY, Issue 1 2009
    Nicola J. Topham
    Summary Natural killer (NK) cells target and kill aberrant cells, such as virally infected and tumorigenic cells. Killing is mediated by cytotoxic molecules which are stored within secretory lysosomes, a specialized exocytic organelle found in NK cells. Target cell recognition induces the formation of a lytic immunological synapse between the NK cell and its target. The polarized exocytosis of secretory lysosomes is then activated and these organelles release their cytotoxic contents at the lytic synapse, specifically killing the target cell. The essential role that secretory lysosome exocytosis plays in the cytotoxic function of NK cells is highlighted by immune disorders that are caused by the mutation of critical components of the exocytic machinery. This review will discuss recent studies on the molecular basis for NK cell secretory lysosome exocytosis and the immunological consequences of defects in the exocytic machinery. [source]


    Electron microscopic study to compare preclinical Cushing's syndrome with overt Cushing's syndrome

    INTERNATIONAL JOURNAL OF UROLOGY, Issue 4 2002
    Daisaku Hirano
    Abstract Background: No significant differences in gross and light- microscopic features have been reported between preclinical and overt Cushing's adenomas. In this study, the ultrastructural differences between the two syndromes was attempted to be clarified. Methods: Two preclinical Cushing's syndrome adenomas and two overt Cushing's syndrome adenomas obtained from surgical extirpation were examined in an electron microscopic study. Results: Light microscopically, the adenomas of both syndromes were composed predominantly of clear cells, with few compact cells. Ultrastructurally, the prominent differences were of development in each organelle: the preclinical Cushing's adenomas had undeveloped mitochondria, which were smaller in size and had sparse cristae, lysosomes and polysomes, whereas the overt Cushing's adenomas contained well-developed mitochondria which were larger in size and were filled with abundant cristae, smooth endoplasmic reticulum (SER), lysosomes and polysomes. Conclusions: Preclinical Cushing's syndrome adenomas were ultrastructurally characterized by a reduced number of cellular organelles such as mitochondria and SER, which are necessary to synthesize glucocorticoid hormones. However, examination of a greater number of adenomas will be required to be able to draw conclusions on the ultrastructural differences between the two syndromes. [source]


    Alterations in renal cilium length during transient complete ureteral obstruction in the mouse

    JOURNAL OF ANATOMY, Issue 2 2008
    Leanne Wang
    Abstract The renal cilium is a non-motile sensory organelle that has been implicated in the control of epithelial phenotype in the kidney. The contribution of renal cilium defects to cystic kidney disease has been the subject of intense study. However, very little is known of the behaviour of this organelle during renal injury and repair. Here we investigate the distribution and dimensions of renal cilia in a mouse model of unilateral ureteral obstruction and reversal of ureteral obstruction. An approximate doubling in the length of renal cilia was observed throughout the nephron and collecting duct of the kidney after 10 days of unilateral ureteral obstruction. A normalization of cilium length was observed during the resolution of renal injury that occurs following the release of ureteral obstruction. Thus variations in the length of the renal cilium appear to be a previously unappreciated indicator of the status of renal injury and repair. Furthermore, increased cilium length following renal injury has implications for the specification of epithelial phenotype during repair of the renal tubule and duct. [source]


    An ultrastructural study of cell death in the CA1 pyramidal field of the hippocapmus in rats submitted to transient global ischemia followed by reperfusion

    JOURNAL OF ANATOMY, Issue 5 2007
    Aline De Souza Pagnussat
    Abstract In the course of ischemia and reperfusion a disruption of release and uptake of excitatory neurotransmitters occurs. This excitotoxicity triggers delayed cell death, a process closely related to mitochondrial physiology and one that shows both apoptotic and necrotic features. The aim of the present study was to use electron microscopy to characterize the cell death of pyramidal cells from the CA1 field of the hippocampus after 10 min of transient global ischemia followed by short reperfusion periods. For this study 25 adult male Wistar rats were used, divided into six groups: 10 min of ischemia, 3, 6, 12 and 24 h of reperfusion and an untouched group. Transient forebrain ischemia was produced using the 4-vessel occlusion method. The pyramidal cells of the CA1 field from rat hippocampus submitted to ischemia exhibited intracellular alterations consistent with a process of degeneration, with varied intensities according to the reperfusion period and bearing both apoptotic and necrotic features. Gradual neuronal and glial modifications allowed for the classification of the degenerative process into three stages: initial, intermediate and final were found. With 3 and 6 h of reperfusion, slight and moderate morphological alterations were seen, such as organelle and cytoplasm edema. Within 12 h of reperfusion, there was an apparent recovery and more ,intact' cells could be identified, while 24 h after the event neuronal damage was more severe and cells with disrupted membranes and cell debris were identified. Necrotic-like neurons were found together with some apoptotic bodies with 24 h of reperfusion. Present results support the view that cell death in the CA1 field of rat hippocampus submitted to 10 min of global transient ischemia and early reperfusion times includes both apoptotic and necrotic features, a process referred to as parapoptosis. [source]