Ordered Mesoporous Silica (ordered + mesoporou_silica)

Distribution by Scientific Domains


Selected Abstracts


Monodisperse Mesoporous Silica Spheres Inside a Bioactive Macroporous Glass,Ceramic Scaffold,

ADVANCED ENGINEERING MATERIALS, Issue 7 2010
Renato Mortera
In the field of bone tissue engineering, monosized MCM-41 spheres have been incorporated inside a bioactive glass,ceramic macroporous scaffold belonging to the SiO2CaOK2O (SCK) system so obtaining a multiscale hierarchical composite. The MCM-41-SCK system was prepared by dipping the glass,ceramic scaffold into the MCM-41 synthesis solution and was characterized by means of XRD, micro-XRD, N2 sorption and scanning electron microscopy. The MCM-41 spheres inside the scaffold are highly uniform in diameter, as those synthesized in powder form. The adsorption capacity of the composite toward ibuprofen is three times higher than that of the MCM-41-free scaffold, because of the presence of the ordered mesoporous silica. Also the release behavior in SBF at 37,°C is strongly affected by the presence of MCM-41 inside the scaffold macropores. [source]


Ordered Mesoporous Silica Derived from Layered Silicates

ADVANCED FUNCTIONAL MATERIALS, Issue 4 2009
Tatsuo Kimura
Abstract Here, the development of ordered mesoporous silica prepared by the reaction of layered silicates with organoammonium surfactants is reviewed. The specific features of mesoporous silica are discussed with relation to the probable formation mechanisms. The recent understanding of the unusual structural changes from the 2D structure to periodic 3D mesostructures is presented. The formation of mesophase silicates from layered silicates with single silicate sheets depends on combined factors including the reactivity of layered silicates, the presence of layered intermediates, the variation of the silicate sheets, and the assemblies of surfactant molecules in the interlayer spaces. FSM-16-type (p6mm) mesoporous silica is formed via layered intermediates composed of fragmented silicate sheets and alkyltrimethylammonium (CnTMA) cations. KSW-2-type (c2mm) mesoporous silica can be prepared through the bending of the individual silicate sheets with intralayer and interlayer condensation. Although the structure of the silicate sheets changes during the reactions with CnTMA cations in a complex manner, the structural units caused by kanemite in the frameworks are retained. Recent development of the structural design in the silicate framework is very important for obtaining KSW-2-based mesoporous silica with molecularly ordered frameworks. The structural units originating from layered silicates are chemically designed and structurally stabilized by direct silylation of as-synthesized KSW-2. Some proposed applications using these mesoporous silica are also summarized with some remarks on the uniqueness of the use of layered silicates by comparison with MCM-type mesoporous silica. [source]


In-situ small-angle neutron scattering study of pore filling and pore emptying in ordered mesoporous silica

JOURNAL OF APPLIED CRYSTALLOGRAPHY, Issue 1 2010
M. Erko
The capillary condensation and capillary emptying of water and perfluoropentane in ordered mesoporous SBA-15 silica is studied by in-situ small-angle neutron scattering (SANS). The SANS data can be perfectly described by a simple analytical model for spatially random pore filling (Laue scattering) for the entire range of pore-filling fractions. From this it is concluded that recently proposed pore correlations due to elastic interactions between neighbouring pores upon capillary condensation do not play a role in this system. The pores fill randomly according to their size distribution, in perfect agreement with the classical Kelvin equation. The relation between the overall pore-filling fraction as determined from the volumetric sorption isotherm, and the fraction of completely filled pores as obtained from the fit of the SANS data, allows conclusions to be drawn about the thermodynamic metastability of the adsorption process. [source]


Control of Drug Release through the In Situ Assembly of Stimuli-Responsive Ordered Mesoporous Silica with Magnetic Particles

CHEMPHYSCHEM, Issue 17 2007
Shenmin Zhu Dr.
Abstract A site-selective controlled delivery system for controlled drug release is fabricated through the in situ assembly of stimuli-responsive ordered SBA-15 and magnetic particles. This approach is based on the formation of ordered mesoporous silica with magnetic particles formed from Fe(CO)5 via the surfactant-template sol-gel method and control of transport through polymerization of N-isopropyl acrylamide inside the pores. Hydrophobic Fe(CO)5 acts as a swelling agent as well as being the source of the magnetic particles. The obtained system demonstrates a high pore diameter (7.1 nm) and pore volume (0.41 cm3,g,1), which improves drug storage for relatively large molecules. Controlled drug release through the porous network is demonstrated by measuring the uptake and release of ibuprofen (IBU). The delivery system displays a high IBU storage capacity of 71.5 wt,%, which is almost twice as large as the highest value based on SBA-15 ever reported. In vitro testing of IBU loading and release exhibits a pronounced transition at around 32,°C, indicating a typical thermosensitive controlled release. [source]


Spherical ordered mesoporous silicas and silica monoliths as stationary phases for liquid chromatography

JOURNAL OF SEPARATION SCIENCE, JSS, Issue 6 2006
Anne Galarneau
Abstract Ordered mesoporous silicas such as micelle-templated silicas (MTS) feature unique textural properties in addition to their high surface area (,1000 m2/g): narrow mesopore size distributions and controlled pore connectivity. These characteristics are highly relevant to chromatographic applications for resistance to mass transfer, which has never been studied in chromatography because of the absence of model materials such as MTS. Their synthesis is based on unique self-assembly processes between surfactants and silica. In order to take advantage of the perfectly adjustable texture of MTS in chromatographic applications, their particle morphology has to be tailored at the micrometer scale. We developed a synthesis strategy to control the particle morphology of MTS using the concept of pseudomorphic transformation. Pseudomorphism was recognized in the mineral world to gain a mineral that presents a morphology not related to its crystallographic symmetry group. Pseudomorphic transformations have been applied to amorphous spherical silica particles usually used in chromatography as stationary phases to produce MTS with the same morphology, using alkaline solution to dissolve progressively and locally silica and reprecipitate it around surfactant micelles into ordered MTS structures. Spherical beads of MTS with hexagonal and cubic symmetries have been synthesized and successfully used in HPLC in fast separation processes. MTS with a highly connected structure (cubic symmetry), uniform pores with a diameter larger than 6 nm in the form of particles of 5 ,m could compete with monolithic silica columns. Monolithic columns are receiving strong interest and represent a milestone in the area of fast separation. Their synthesis is a sol-gel process based on phase separation between silica and water, which is assisted by the presence of polymers. The control of the synthesis of monolithic silica has been systematically explored. Because of unresolved yet cladding problems to evaluate the resulting macromonoliths in HPLC, micromonoliths were synthesized into fused-silica capillaries and evaluated by nano-LC and CEC. Only CEC allows to gain high column efficiencies in fast separation processes. Capillary silica monolithic columns represent attractive alternatives for miniaturization processes (lab-on-a chip) using CEC. [source]