Orthopedic Patients (orthopedic + patient)

Distribution by Scientific Domains


Selected Abstracts


From heparins to factor Xa inhibitors and beyond

EUROPEAN JOURNAL OF CLINICAL INVESTIGATION, Issue 2005
S. Alban
Abstract Despite some disadvantages, unfractionated heparin (UFH) and oral anticoagulants have been the only anticoagulants for prophylaxis and therapy of thromboembolic disorders for several decades. Based on the increasing knowledge of the structure and pharmacology of heparin, low molecular weight heparins (LMWH) have been developed in the 1980s. Compared to UFH, their advantages are mainly based on their reduced nonspecific binding to proteins and cells resulting in improved pharmacokinetics. In 1991, LMWH were declared as the most efficient prophylaxis in high-risk patients. Although the use of LMWH is increasing and they are today also applied for therapy and in other indications like acute coronary syndrome, they are considered not optimal concerning efficacy and safety. With the approval of fondaparinux for the prevention of venous thromboembolic disease in high-risk orthopedic patients, there might be a paradigm shift in the field of anticoagulants. Fondaparinux, a synthetic, chemically defined pentasaccharide, is the first selective inhibitor of factor Xa. By its highly specific binding to antithrombin, it selectively inhibits factor Xa and consequently prevents thrombin generation. In contrast to UFH and LMWH, it does not bind to any other cells and other proteins than antithrombin. This leads to a favourable linear pharmacokinetic profile, allowing once-daily subcutaneous application of a fixed dose without monitoring in thromboembolism prophylaxis. In addition to the evaluation of fondaparinux for further indications, chemical modifications of this pentasaccharide such as the long-acting idraparinux are currently under investigation. [source]


Vitamin D Receptor Expression in Human Muscle Tissue Decreases With Age,

JOURNAL OF BONE AND MINERAL RESEARCH, Issue 2 2004
HA Bischoff-Ferrari
Abstract Intracellular 1,25-dihydroxyvitamin D receptor (VDR) is expressed in human skeletal muscle tissue. However, it is unknown whether VDR expression in vivo is related to age or vitamin D status, or whether VDR expression differs between skeletal muscle groups. Introduction: We investigated these factors and their relation to 1,25-dihydroxyvitamin D receptor (VDR) expression in freshly removed human muscle tissue. Materials and Methods: We investigated biopsy specimens of the gluteus medius taken at surgery from 20 female patients undergoing total hip arthroplasty (mean age, 71.6 ± 14.5; 72% > 65 years) and biopsy specimens of the transversospinalis muscle taken at surgery from 12 female patients with spinal operations (mean age, 55.2 ± 19.6; 28% > 65 years). The specimens were obtained by immunohistological staining of the VDR using a monoclonal rat antibody to the VDR (Clone no. 9A7). Quantitative VDR expression (number of VDR positive nuclei) was assessed by counting 500 nuclei per specimen and person. Serum concentrations of 25-hydroxyvitamin D and 1,25-dihydroxyvitamin D were assessed at day of admission to surgery. Results: All muscle biopsy specimens stained positive for VDR. In the univariate analyses, increased age was associated with decreased VDR expression (r = 0.5: p = 0.004), whereas there were no significant correlations between VDR expression and 25-hydroxyvitamin D or 1,25-dihydroxyvitamin D levels. VDR expression did not differ between patients with hip and spinal surgery. In the multivariate analysis, older age was a significant predictor of decreased VDR expression after controlling biopsy location (gluteus medius or the transversospinalis muscle), and 25-hydroxyvitamin D levels (linear regression analysis: ,-estimate = ,2.56; p = 0.047). Conclusions: Intranuclear immunostaining of the VDR was present in muscle biopsy specimens of all orthopedic patients. Older age was significantly associated with decreased VDR expression, independent of biopsy location and serum 25-hydroxyvitamin D levels. [source]


Laboratory and clinical outcomes of pharmacogenetic vs. clinical protocols for warfarin initiation in orthopedic patients

JOURNAL OF THROMBOSIS AND HAEMOSTASIS, Issue 10 2008
P. A. LENZINI
Summary.,Background:,Warfarin is commonly prescribed for prophylaxis and treatment of thromboembolism after orthopedic surgery. During warfarin initiation, out-of-range International Normalized Ratio (INR) values and adverse events are common. Methods:,In orthopedic patients beginning warfarin therapy, we developed and prospectively validated pharmacogenetic and clinical dose refinement algorithms to revise the estimated therapeutic dose after 4 days of therapy. Results:,The pharmacogenetic algorithm used the cytochrome P450 (CYP) 2C9 genotype, smoking status, peri-operative blood loss, liver disease, INR values and dose history to predict the therapeutic dose. The R2 was 82% in a derivation cohort (n = 86) and 70% when used prospectively (n = 146). The R2 of the clinical algorithm that used INR values and dose history to predict the therapeutic dose was 57% in a derivation cohort (n = 178) and 48% in a prospective validation cohort (n = 146). In 1 month of prospective follow-up, the percent time spent in the therapeutic range was 7% higher (95% CI: 2.7,11.7) in the pharmacogenetic cohort. The risk of a laboratory or clinical adverse event was also significantly reduced in the pharmacogenetic cohort (Hazard Ratio 0.54; 95% CI: 0.30,0.97). Conclusions:,Warfarin dose adjustments that incorporate genotype and clinical variables available after four warfarin doses are accurate. In this non-randomized, prospective study, pharmacogenetic dose refinements were associated with more time spent in the therapeutic range and fewer laboratory or clinical adverse events. To facilitate gene-guided warfarin dosing we created a non-profit website, http://www.WarfarinDosing.org. [source]


Involvement of breast cancer resistance protein expression on rheumatoid arthritis synovial tissue macrophages in resistance to methotrexate and leflunomide

ARTHRITIS & RHEUMATISM, Issue 3 2009
Joost W. van der Heijden
Objective To determine whether multidrug-resistance efflux transporters are expressed on immune effector cells in synovial tissue from patients with rheumatoid arthritis (RA) and compromise the efficacy of methotrexate (MTX) and leflunomide (LEF). Methods Synovial tissue biopsy samples obtained from RA patients before treatment and 4 months after starting treatment with MTX (n = 17) or LEF (n = 13) were examined by immunohistochemical staining and digital image analysis for the expression of the drug efflux transporters P-glycoprotein, multidrug resistance,associated protein 1 (MRP-1) through MRP-5, MRP-8, MRP-9, and breast cancer resistance protein (BCRP), and the relationship to clinical efficacy of MTX and LEF was assessed. Results BCRP expression was observed in all RA synovial biopsy samples, both pretreatment and posttreatment, but not in control noninflammatory synovial tissue samples from orthopedic patients. BCRP expression was found both in the intimal lining layer and on macrophages and endothelial cells in the synovial sublining. Total numbers of macrophages in RA patients decreased upon treatment; in biopsy samples with persistently high macrophage counts, 2-fold higher BCRP expression was observed. Furthermore, median BCRP expression was significantly increased (3-fold) in nonresponders to disease-modifying antirheumatic drugs (DMARDs) compared with responders to DMARDs (P = 0.048). Low expression of MRP-1 was found on synovial macrophages, along with moderate expression in T cell areas of synovial biopsy specimens from one-third of the RA patients. Conclusion These findings show that the drug resistance,related proteins BCRP and MRP-1 are expressed on inflammatory cells in RA synovial tissue. Since MTX is a substrate for both BCRP and MRP-1, and LEF is a high-affinity substrate for BCRP, these transporters may contribute to reduced therapeutic efficacy of these DMARDs. [source]