Orexin Receptors (orexin + receptor)

Distribution by Scientific Domains


Selected Abstracts


Cardiovascular Actions of Orexin-A in the Rat Subfornical Organ

JOURNAL OF NEUROENDOCRINOLOGY, Issue 1 2007
P. M. Smith
Orexin-A is a neuropeptide, primarily produced in the lateral hypothalamic/perifornical hypothalamus. Orexin receptors and immunoreactive neuronal fibres are widely distributed throughout the brain, suggesting integrative neurotransmitter roles in a variety of physiological systems. Intracerebroventricular injections of orexin-A increase blood pressure and stimulate drinking, and the subfornical organ (SFO), a circumventricular structure implicated in autonomic control, is a potential site at which orexin may act to exert these effects. We have therefore used microinjection techniques to examine the effects of orexin-A administered directly into the SFO on blood pressure and heart rate in urethane anaesthetised male Sprague-Dawley rats. Orexin-A microinjection (50 fmol) into the SFO caused site-specific decreases in blood pressure (SFO: mean area under curve (AUC) = ,681.7 ± 46.8 mmHg*s, n = 22 versus non-SFO: 63.68 ± 54.69 mmHg*s, n = 15, P < 0.001), and heart rate (SFO: mean AUC = ,26.7 ± 2.8 beats, n = 22, versus non-SFO: mean AUC = 1.62 ± 2.1 beats, n = 15, P < 0.001). Vagotomy did not alter the hypotensive or bradycardic responses elicited by orexin-A microinjection. Prior ,-adrenoceptor blockade with phenoxybenzamine (1 mg/kg, i.v.) masked the orexin-A induced blood pressure (mean AUC = ,122.6 ± 17.6 mmHg*s, n = 4, P < 0.01 paired t-test) and heart rate (mean AUC = ,6.7 ± 1.7 beats, n = 4, P < 0.05, paired test) response. The orexin-A induced heart rate response was attenuated when ,-adrenoceptors were blocked with propranolol (1 mg/kg, i.v.; mean AUC = 0.6 ± 2.8 beats, n = 5, P < 0.01 paired t-test). These studies demonstrate that microinjection of orexin-A into the SFO causes site specific decreases in blood pressure and heart rate which is mediated by a reduction in sympathetic tone. [source]


Role of orexin in the regulation of glucose homeostasis

ACTA PHYSIOLOGICA, Issue 3 2010
H. Tsuneki
Abstract Orexin-A (hypocretin-1) and orexin-B (hypocretin-2) are hypothalamic neuropeptides that play key roles in the regulation of wakefulness, feeding, reward, autonomic functions and energy homeostasis. To control these functions indispensable for survival, orexin-expressing neurones integrate peripheral metabolic signals, interact with many types of neurones in the brain and modulate their activities via the activation of orexin-1 receptor or orexin-2 receptor. In addition, a new functional role of orexin is emerging in the regulation of insulin and leptin sensitivities responsible for whole-body glucose metabolism. Recent evidence indicates that orexin efficiently protects against the development of peripheral insulin resistance induced by ageing or high-fat feeding in mice. In particular, the orexin receptor-2 signalling appears to confer resistance to diet-induced obesity and insulin insensitivity by improving leptin sensitivity. In fact, the expression of orexin gene is known to be down-regulated by hyperglycaemia in the rodent model of diabetes, such as ob/ob and db/db mice. Moreover, the levels of orexin receptor-2 mRNA have been shown to decline in the brain of mice along with ageing. These suggest that hyperglycaemia due to insulin insensitivity during ageing or by habitual consumption of a high-fat diet leads to the reduction in orexin expression in the hypothalamus, thereby further exacerbating peripheral insulin resistance. Therefore, orexin receptor controlling hypothalamic insulin/leptin actions may be a new target for possible future treatment of hyperglycaemia in patients with type 2 diabetes. [source]


Role of orexins in the hypothalamic-pituitary-ovarian relationships

ACTA PHYSIOLOGICA, Issue 3 2010
P. Silveyra
Abstract Appropriate nutritional and vigilance states are needed for reproduction. In previous works, we described the influence of the hormonal milieu of proestrus on the orexinergic system and we found that orexin receptor 1 expression in the hypothalamus, but not other neural areas, and the adenohypophysis was under the influence of oestradiol and the time of the day. Information from the sexual hormonal milieu of proestrous afternoon impacts on various components of the orexinergic system and alertness on this particular night of proestrus would be of importance for successful reproduction. In this review, we summarize the available experimental data supporting the participation of orexins in the hypothalamic-pituitary-ovarian relationships. All together, these results suggest a role of the orexinergic system as an integrative link among vital functions such as reproduction, food intake, alertness and the inner biological clock. [source]


Long-lasting up-regulation of orexin receptor type 2 protein levels in the rat nucleus accumbens after chronic cocaine administration

JOURNAL OF NEUROCHEMISTRY, Issue 1 2007
Guo-Chi Zhang
Abstract Hypothalamic orexin (hypocretin) neurons project to the key structures of the limbic system and orexin receptors, both orexin receptor type 1 (OXR1) and type 2 (OXR2), are expressed in most limbic regions. Emerging evidence suggests that orexin is among important neurotransmitters that regulate addictive properties of drugs of abuse. In this study, we examined the effect of psychostimulant cocaine on orexin receptor protein abundance in the rat limbic system in vivo. Intermittent administration of cocaine (20 mg/kg, i.p., once daily for 5 days) caused a typical behavioral sensitization response to a challenge cocaine injection at a 14-day withdrawal period. Repeated cocaine administration at the same withdrawal time also increased OXR2 protein levels in the nucleus accumbens while repeated cocaine had no effect on OXR1 and orexin neuropeptide (both orexin-A and orexin-B) levels in this region. In contrast to the nucleus accumbens, OXR2 levels in the frontal cortex, the ventral tegmental area, the hippocampus, and the dorsal striatum (caudate putamen) were not altered by cocaine. Remarkably, the up-regulated OXR2 levels in the nucleus accumbens showed a long-lasting nature as it persisted up to 60 days after the discontinuation of repeated cocaine treatments. In contrast to chronic cocaine administration, an acute cocaine injection was insufficient to modify levels of any orexin receptor and peptide. Our data identify the up-regulation of OXR2 in the nucleus accumbens as an enduring molecular event that is correlated well with behavioral plasticity in response to chronic psychostimulant administration. This OXR2 up-regulation may reflect a key adaptation of limbic orexinergic transmission to chronic drug exposure and may thus be critical for the expression of motor plasticity. [source]


Histamine-1 receptor is not required as a downstream effector of orexin-2 receptor in maintenance of basal sleep/wake states

ACTA PHYSIOLOGICA, Issue 3 2010
M. Hondo
Abstract Aim:, The effect of orexin on wakefulness has been suggested to be largely mediated by activation of histaminergic neurones in the tuberomammillary nucleus (TMN) via orexin receptor-2 (OX2R). However, orexin receptors in other regions of the brain might also play important roles in maintenance of wakefulness. To dissect the role of the histaminergic system as a downstream mediator of the orexin system in the regulation of sleep/wake states without compensation by the orexin receptor-1 (OX1R) mediated pathways, we analysed the phenotype of Histamine-1 receptor (H1R) and OX1R double-deficient (H1R,/,;OX1R,/,) mice. These mice lack OX1R-mediated pathways in addition to deficiency of H1R, which is thought to be the most important system in downstream of OX2R. Methods:, We used H1R deficient (H1R,/,) mice, H1R,/,;OX1R,/, mice, OX1R and OX2R double-deficient (OX1R,/,;OX2R,/,) mice, and wild type controls. Rapid eye movement (REM) sleep, non-REM (NREM) sleep and awake states were determined by polygraphic electroencephalographic/electromyographic recording. Results:, No abnormality in sleep/wake states was observed in H1R,/, mice, consistent with previous studies. H1R,/,;OX1R,/, mice also showed a sleep/wake phenotype comparable to that of wild type mice, while OX1R,/,; OX2R,/, mice showed severe fragmentation of sleep/wake states. Conclusion:, Our observations showed that regulation of the sleep/wake states is completely achieved by OX2R-expressing neurones without involving H1R-mediated pathways. The maintenance of basal physiological sleep/wake states is fully achieved without both H1 and OX1 receptors. Downstream pathways of OX2R other than the histaminergic system might play an important role in the maintenance of sleep/wake states. [source]


Interactions of orexins/hypocretins with adrenocortical functions

ACTA PHYSIOLOGICA, Issue 3 2010
S. M. Kagerer
Abstract The neuropeptides orexin A and B (hypocretin-1 and -2) are involved in numerous central regulation processes such as energy homeostasis, sleeping behaviour and addiction. The expression of orexins and orexin receptors in a variety of tissues outside the brain and the presence of orexin A in the circulation indicate the existence of an additional peripheral orexin system. Furthermore, it is well established that orexins exert an influence on the regulation of the hypothalamus,pituitary,adrenal axis, acting both on its central and peripheral branch. In rat and human adrenal cortices the expression of both orexin receptors has been verified with a predominance of OX2R. The local expression of orexin receptors was observed to be gender specific and to be modified by plasma glucose and insulin concentrations, nutritional status as well as gonadal steroids. Various studies consistently demonstrated orexin A to enhance glucocorticoid secretion of rat and human adrenal cortices, while orexin B was found to be either less potent or ineffective. On the contrary, the influence of orexins on adrenocortical aldosterone production and cell proliferation is still more controversial. Recent findings indicate that orexins stimulate adrenocortical steroidogenesis by augmenting transcription of selective steroidogenic enzymes and proteins such as steroidogenic acute regulatory protein. Both, Gq and Gs, signalling pathways with a downstream activation of MAP kinases appear to be involved in this regulation. [source]


Effects of short-term food deprivation on orexin-A-induced intestinal bicarbonate secretion in comparison with related secretagogues

ACTA PHYSIOLOGICA, Issue 3 2010
G. Flemström
Abstract Studies of gastrointestinal physiology in humans and intact animals are usually conducted after overnight fast. We compared the effects of orexin-A, vasoactive intestinal polypeptide (VIP), melatonin, serotonin, uroguanylin, ghrelin and prostaglandin E2 (PGE2) on duodenal bicarbonate secretion in fed and overnight fasted animals. This review is a summary of our findings. Secretagogues were administered by intra-arterial infusion or luminally (PGE2). Enterocyte intracellular calcium ([Ca2+]i) signalling was studied by fluorescence imaging. Total RNA was extracted, reverse transcripted to cDNA and expression of orexin receptors measured by quantitative real-time PCR. Orexin-A stimulates the duodenal secretion in continuously fed animals but not in food-deprived animals. Similarly, short-term fasting causes a 100-fold decrease in the amount of the muscarinic agonist bethanechol required for stimulation of secretion. In contrast, fasting does not affect secretory responses to intra-arterial VIP, melatonin, serotonin, uroguanylin and ghrelin, or that to luminal PGE2. Orexin-A induces [Ca2+]i signalling in enterocytes from fed rats but no significant [Ca2+]i responses occur in enterocytes from fasted animals. In addition, overnight fasting decreases the expression of mucosal orexin receptors. Short-term food deprivation thus decreases duodenal expression of orexin receptors and abolishes the secretory response to orexin-A as well as orexin-A-induced [Ca2+]i signalling. Fasting, furthermore, decreases mucosal sensitivity to bethanechol. The absence of declines in secretory responses to other secretagogues tested strongly suggests that short-term fasting does not affect the secretory capacity of the duodenal mucosa in general. Studies of intestinal secretion require particular evaluation with respect to feeding status. [source]


Rapid and easy semi-quantitative evaluation method for diacylglycerol and inositol-1,4,5-trisphosphate generation in orexin receptor signalling

ACTA PHYSIOLOGICA, Issue 3 2010
M. E. Ekholm
Abstract Aim:, Fluorescent protein-based indicators have enabled measurement of intracellular signals previously nearly inaccessible for studies. However, indicators showing intracellular translocation upon response suffer from serious limitations, especially the very time-consuming data collection. We therefore set out in this study to evaluate whether fixing and counting cells showing translocation could mend this issue. Methods:, Altogether three different genetically encoded indicators for diacylglycerol and inositol-1,4,5-trisphosphate were transiently expressed in Chinese hamster ovary cells stably expressing human OX1 orexin receptors. Upon stimulation with orexin-A, the cells were fixed with six different protocols. Results:, Different protocols showed clear differences in their ability to preserve the indicator's localization (i.e. translocation after stimulus) and its fluorescence, and the best results for each indicator were obtained with a different protocol. The concentration,response data obtained with cell counting are mostly comparable to the real-time translocation and biochemical data. Conclusion:, The counting method, as used here, works at single time point and looses the single-cell-quantitative aspect. However, it also has some useful properties. First, it easily allows processing of a 100- to 1000-fold higher cell numbers than real-time imaging producing statistically consistent population-quantitative data much faster. Secondly, it does not require expensive real-time imaging equipment. Fluorescence in fixed cells can also be quantitated, though this analysis would be more time-consuming than cell counting. Thirdly, in addition to the quantitative data collection, the method could be applied for identifying responsive cells. This might be very useful in identification of e.g. orexin-responding neurones in a large population of non-responsive cells in primary cultures. [source]


Orexins/hypocretins and orexin receptors in apoptosis: a mini-review

ACTA PHYSIOLOGICA, Issue 3 2010
M. Laburthe
Abstract An unexpected and fascinating aspect of the neuropeptides orexins has recently emerged when it was shown that orexins acting at orexin receptors OX1R or OX2R induce dramatic apoptosis resulting in massive reduction in cell growth in various cancer cell lines. This mini-review will provide the reader with recent findings related to the proapoptotic actions of orexins and the entirely novel mechanism whereby the seven membrane-spanning G-protein-coupled receptor (GPCR) OX1R triggers apoptosis. Recent data show that orexins induce tyrosine phosphorylation of the tyrosine-based motifs , immunoreceptor tyrosine-based inhibitory motif and immunoreceptor tyrosine-based switch motif , in OX1R. These phosphorylations result in the recruitment and activation of the phosphotyrosine phosphatase SHP-2 and subsequent cytochrome c -mediated mitochondrial apoptosis. Finally, this mini-review will also speculate on: (1) the potential importance of tyrosine-based motifs in the large family of GPCRs; (2) the interest of orexin receptors as therapeutic targets in cancer therapy; (3) the possible role of orexin receptor-mediated apoptosis in physiology and pathophysiology in the brain (neurodevelopment, neurodegenerative diseases) and in the periphery. [source]


Long-lasting up-regulation of orexin receptor type 2 protein levels in the rat nucleus accumbens after chronic cocaine administration

JOURNAL OF NEUROCHEMISTRY, Issue 1 2007
Guo-Chi Zhang
Abstract Hypothalamic orexin (hypocretin) neurons project to the key structures of the limbic system and orexin receptors, both orexin receptor type 1 (OXR1) and type 2 (OXR2), are expressed in most limbic regions. Emerging evidence suggests that orexin is among important neurotransmitters that regulate addictive properties of drugs of abuse. In this study, we examined the effect of psychostimulant cocaine on orexin receptor protein abundance in the rat limbic system in vivo. Intermittent administration of cocaine (20 mg/kg, i.p., once daily for 5 days) caused a typical behavioral sensitization response to a challenge cocaine injection at a 14-day withdrawal period. Repeated cocaine administration at the same withdrawal time also increased OXR2 protein levels in the nucleus accumbens while repeated cocaine had no effect on OXR1 and orexin neuropeptide (both orexin-A and orexin-B) levels in this region. In contrast to the nucleus accumbens, OXR2 levels in the frontal cortex, the ventral tegmental area, the hippocampus, and the dorsal striatum (caudate putamen) were not altered by cocaine. Remarkably, the up-regulated OXR2 levels in the nucleus accumbens showed a long-lasting nature as it persisted up to 60 days after the discontinuation of repeated cocaine treatments. In contrast to chronic cocaine administration, an acute cocaine injection was insufficient to modify levels of any orexin receptor and peptide. Our data identify the up-regulation of OXR2 in the nucleus accumbens as an enduring molecular event that is correlated well with behavioral plasticity in response to chronic psychostimulant administration. This OXR2 up-regulation may reflect a key adaptation of limbic orexinergic transmission to chronic drug exposure and may thus be critical for the expression of motor plasticity. [source]


Demonstration of an orexinergic central innervation of the pineal gland of the pig

THE JOURNAL OF COMPARATIVE NEUROLOGY, Issue 2 2004
Chiara Fabris
Abstract Orexins/hypocretins, two isoforms of the same prepropeptide, are widely distributed throughout the brain and are involved in several physiological and neuroendocrine regulatory patterns, mostly related to feeding, sleep, arousal, and cyclic sleep-wake behaviors. Orexin-A and orexin-B bind with different affinities to two G-protein-coupled transmembrane receptors, orexin-1 and orexin-2 receptors (OR-R1 and OR-R2, respectively). Because of the similarities between the human and the swine brain, we have studied the pig to investigate the orexinergic system in the diencephalon, with special emphasis on the neuroanatomical projections to the epithalamic region. By using antibodies against orexin-A and orexin-B, immunoreactive large multipolar perikarya were detected in the hypothalamic periventricular and perifornical areas at the light and electron microscopic levels. In the region of the paraventricular nucleus, the orexinergic neurons extended all the way to the lateral hypothalamic area. Immunoreactive nerve fibers, often endowed with large varicosities, were found throughout the hypothalamus and the epithalamus. Some periventricular immunoreactive nerve fibers entered the epithalamic region and continued into the pineal stalk and parenchyma to disperse among the pinealocytes. Immunoelectron microscopy confirmed the presence of orexinergic nerve fibers in the pig pineal gland. After extraction of total mRNA from the hypothalamus and pineal gland, we performed RT-PCR and nested PCR using primers specific for porcine orexin receptors. PCR products were sequenced, verifying the presence of both OR-R1 and OR-R2 in the tissues investigated. These findings, supported by previous studies on rodents, suggest a hypothalamic regulation of the pineal gland via central orexinergic nervous inputs. J. Comp. Neurol. 471:113,127, 2004. © 2004 Wiley-Liss, Inc. [source]