Optimum Dietary Protein Level (optimum + dietary_protein_level)

Distribution by Scientific Domains


Selected Abstracts


Optimum Dietary Protein Levels and Protein to Energy Ratios in Olive Flounder Paralichthys olivaceus

JOURNAL OF THE WORLD AQUACULTURE SOCIETY, Issue 2 2005
Kang-Woong Kim
The olive flounder Paralichthys olivaceus is one of the most commercially important fish species in Korea. In order to formulate better diets for cultured olive flounder we evaluated the optimum dietary protein requirements for larval, fry and juvenile olive flounder, and the optimum dietary protein to energy ratio for juvenile olive flounder. Results of four separate experiments suggested that the optimum dietary protein requirements were 60% in larvae (0.3 g), 46.4,51.2% in 4.1-g juvenile, and 40,44% in 13.3 g growing olive flounder. The optimum dietary protein to energy ratio based on weight gain, feed efficiency, specific growth rate, and protein retention efficiency was 27,28 mg protein/kJ 2 energy (35 and 45% CP for diets containing 12.5 and 16.7 kJ energylg diet, respectively). [source]


Reevaluation of the Dietary Protein Requirement of Japanese Flounder Paralichthys olivaceus

JOURNAL OF THE WORLD AQUACULTURE SOCIETY, Issue 2 2003
Kangwoong Kim
An experiment was conducted to determine the dietary protein requirement by different analysis methods and to study the effects of dietary protein levels on growth performance and body composition in Japanese flounder Paralichthys olivaceus fed white fish meal and casein-based diets for 8 wk. After a 1-wk conditioning period, one of six isocaloric diets containing 30, 36, 42, 48, 54, and 60% crude protein (CP) was fed to fish at approximately 4,5% of wet body weight on a dry matter basis to triplicate groups of 15 fish averaging 13.3 ± 0.06 g (mean ± SD). After 8 wk of the feeding trial, weight gain (WG) and feed efficiency (FE) from fish fed 48% CP diet were similar to those from fish fed 42% and 54% CP diets, and were significantly higher than those from fish fed 30, 36 and 60% CP diets (P < 0.05). Fish fed 48 and 54% CP diets had a significant higher specific growth rate (SGR) than did fish fed 30 and 36% CP diets (P 0.05). Protein efficiency ratio (PER) was inversely related to the dietary protein level. No significant differences existed in hematocrit (PCV) and survival rate among the dietary treatments. Broken-line model analysis indicated that the optimum dietary protein level could be 44.0 ± 3.0% for maximum WG in Japanese flounder. Polynomial regression analysis of the dose-response showed that maximum WG occurred at 50.2% (R2= 0.94) based on WG, and the second-order polynomial regression analysis with 95% confidence limits revealed that the range of minimum protein requirement was between 38.9% and 40.3% based on WG. Therefore, these findings suggest that the optimum dietary protein requirement for maximum growth of Japanese flounder is greater than 40%, but less than 44% CP in the fish meal and casein-based diets containing 17.0 kJ/g of energy. [source]


The effect of protein levels on growth, postprandial excretion and tryptic activity of juvenile mullet Mugil platanus (Günther)

AQUACULTURE RESEARCH, Issue 4 2010
Cristina V A De Carvalho
Abstract The objective of the present work was to determine the optimum dietary protein level for juvenile mullets. Five isocaloric diets were formulated to contain increasing levels (300, 350, 400, 450 and 500 g kg,1) of crude protein (CP) corresponding to 18.7 MJ metabolizable energy kg,1. All diets were tested in triplicate. Each experimental unit was composed of a 50 L tank with 50 juveniles (mean ± SE initial weight and length equal to 1.17 ± 0.02 g and 4.34 ± 0.03 cm respectively). Diets were offered five times a day until apparent satiation for 35 days. No significant difference (P>0.05) was observed in survival rate, feed efficiency and body composition between treatments. However, weight gain, feed consumption and specific growth rate were higher in fish fed the 350 g kg,1 CP level than those fed the highest protein content diet (500 g kg,1 CP). The amount of postprandial ammonia excreted by mullet was linearly related to protein intake. Intestinal tryptic activity was inversely proportional to the percentage of dietary CP. It is likely that diets containing <350 g kg,1 CP will be needed for on-growing mullet, especially when reared in ponds with abundant natural food. [source]


Effect of dietary protein levels on growth performance and whole body composition of summerling and winterling spotted barbel (Hemibarbus maculates Bleeker)

AQUACULTURE NUTRITION, Issue 4 2010
J.-M. CHEN
Abstract Six test diets with protein levels varying from 250 to 500 g kg,1 were fed to six triplicate groups of summerling (initial weight: 1.56 g) and seven test diets with protein levels varying from 200 to 500 g kg,1 were fed to seven triplicate groups of winterling (initial weight: 9.49 g) for 8 weeks. Weight gain (WG) and feed efficiency (FE) of summerling significantly increased with increasing dietary protein levels from 250 to 350 g kg,1 and slightly declined, but without statistical significance at a dietary protein level of 400 g kg,1, then further significantly decreased with increasing protein levels to 450 and 500 g kg,1; WG of winterling increased significantly with increasing dietary protein levels from 200 to 300 g kg,1 (P < 0.05), and above this level, WG had a tendency to decrease with increasing dietary protein levels. Winterling fed diets with 300 and 400 g kg,1 of dietary protein had significantly higher FE than those fed other diets. WG data analysis by quadratic regressions showed that the optimum dietary protein levels required for the maximum growth of summerling and winterling were 374 and 355 g kg,1 of dry diet respectively. Protein efficiency ratio of both summerling and winterling negatively correlated with levels of dietary protein. The whole body moisture, protein, lipid and ash of summerling after being fed various test diets for 8 weeks were significantly different among treatments (P < 0.05). The whole body moisture and fat of winterling were also significantly affected by dietary protein levels (P < 0.05), while the whole body protein and ash of winterling were not (P > 0.05). [source]