Operant Paradigm (operant + paradigm)

Distribution by Scientific Domains


Selected Abstracts


Expression of c-Fos in Alko Alcohol Rats Responding for Ethanol in an Operant Paradigm

ALCOHOLISM, Issue 5 2001
Adam Z. Weitemier
Background: Identification of the brain regions involved in ethanol administration is important for understanding the neurobiology of ethanol addiction. Animal studies with different brain mapping techniques found that voluntary ethanol self-administration leads to changes in activity of specific brain regions in patterns that only partially overlap with patterns of brain regions affected by involuntary (i.e., experimenter-administered) ethanol administration. As an extension of studies mapping changes in neural activity after voluntary ethanol drinking, this study analyzed expression of the inducible transcription factor c-Fos after ethanol consumption in an operant procedure. Methods: AA (Alko alcohol) rats were trained to operantly respond for water, 0.2% saccharin, 0.2% saccharin/10% (w/v) ethanol, or 10% ethanol in a 30-min limited-access procedure. Animals were allowed to self-administer solutions for at least 40 ethanol response sessions and were killed 1.5 hr after beginning of the last session. Forty-seven brain regions were immunohistochemically analyzed for c-Fos expression. Results: In this paradigm, ethanol dose-dependently increased c-Fos expression in the Edinger-Westphal nucleus (EW) and decreased expression in the dorsal tenia tecta compared with no-ethanol controls. No effects of saccharin on c-Fos expression were found. Conclusions: Our results extend previous findings of preferential sensitivity of EW to alcohol in voluntary self-administration procedures to operant responding for ethanol and warrant further investigation of ethanol's effects on the EW. The finding that ethanol attenuated c-Fos expression in the tenia tecta is novel. Taken together, these findings confirm that voluntary ethanol self-administration leads to changes in activity of a limited number of brain regions with previously unexamined roles in ethanol sensitivity and addiction. [source]


The Alcohol Deprivation Effect in C57BL/6J Mice is Observed Using Operant Self-Administration Procedures and is Modulated by CRF-1 Receptor Signaling

ALCOHOLISM, Issue 1 2009
Dennis R. Sparta
Background:, The alcohol deprivation effect (ADE) is characterized by transient excessive alcohol consumption upon reinstatement of ethanol following a period of ethanol deprivation. While this phenomenon has been observed in rats using both bottle drinking (consummatory behavior) and operant self-administration (consummatory and appetitive "ethanol-seeking" behavior) procedures, ADE studies in mice have primarily relied on bottle drinking measures. Furthermore, the neurochemical pathways that modulate the ADE are not well understood. Therefore, we determined whether the ADE can be observed in C57BL/6J mice using operant self-administration procedures and if expression of the ADE is modulated by the corticotropin releasing factor-1 (CRF-1) receptor. Methods:, C57BL/6J mice were trained in a 2-hour operant self-administration paradigm to lever press for 10% ethanol or water on separate response keys. Between operant sessions, mice had access to ethanol in their homecage. Once stable responding occurred, mice were deprived of ethanol for 4 days and were then retested with ethanol in the operant paradigm for 3 consecutive days. Next, to assess the role of the CRF-1 receptor, mice were given intraperitoneal (i.p.) injection (0, 10, or 20 mg/kg) of the CRF-1 receptor antagonist CP-154,526 30 minutes before ADE testing. Additional experiments assessed (i) ADE responding in which the alternate response lever was inactive, (ii) the effects of CP-154,526 on self-administration of a 1% sucrose solution following 4 days of deprivation, and (iii) ADE responding in which mice did not received i.p. injections throughout the experiment. Results:, Mice exhibited a significant increase in postdeprivation lever responding for ethanol with either a water reinforced or inactive alternate lever. Interestingly, i.p. injection of a 10 mg/kg dose of CP-154,526 protected against the ADE while not affecting lever responding for a sucrose solution. Finally, baseline and deprivation-induced increases of ethanol reinforced lever responding were greater in mice not given i.p. injections. Conclusions:, The ADE in C57BL/6J mice can be modeled using the operant self-administration paradigm and increased ethanol self-administration associated with the ADE is modulated by CRF-1 receptor signaling. [source]


Increased Consumption but Not Operant Self-administration of Ethanol in Mice Lacking the RII, Subunit of Protein Kinase A

ALCOHOLISM, Issue 5 2006
Frank M. Ferraro III
Background: Accumulating evidence indicates that adenosine monophosphate (cAMP)-dependent protein kinase A (PKA) is involved in the neurobiological responses to ethanol. Previous reports indicate that mice lacking the RII, subunit of PKA (RII,,/,) voluntarily consume more ethanol than wild-type controls (RII,+/+) using 2-bottle testing procedures. Although such procedures primarily measure consummatory behavior, operant self-administration procedures allow analysis of consummatory as well as appetitive or "ethanol-seeking" behavior (i.e., lever pressing is required to gain access to the ethanol solution). Therefore, we determined whether the high ethanol consumption characteristic of RII,,/, mice would be complemented by increased appetitive ethanol-seeking behavior in an operant paradigm. Methods: RII,,/, (n=8) and RII,+/+ (n=8) mice were initially sucrose-faded until they were lever responding for nonsweetened ethanol (10, 14, and 18%). Following the self-administration testing, RII,+/+ and RII,,/, mice were given access to 2 bottles, one containing water and the other ethanol to replicate the voluntary ethanol drinking data previously from our laboratory. Finally, immediately after voluntary consumption all mice were again tested for self-administration of 10% ethanol. Alterations in the reinforcement schedule were also explored as RII,+/+ and RII,,/, mice were tested for self-administration of 10% ethanol at FR-3 and FR-5 schedules. Results: The RII,,/, mice displayed lower operant responding for ethanol and food reinforcement compared with RII,+/+ controls. However, this effect was driven by a significant increase in lever responses made by female RII,+/+ mice. When the excessive lever responses of the female RII,+/+ mice are accounted for, the RII,,/, mice show ethanol lever responses comparable to controls. Following operant self-administration testing, RII,,/, mice of both sexes consumed more ethanol solution compared with RII,+/+ mice during 2-bottle testing. Conclusions: Increased ingestion of ethanol by RII,,/, mice is likely the result of altered PKA activity within neuronal pathways that control ethanol-consummatory behaviors. Conversely, the RII, subunit of PKA appears not to play a critical role in neuronal pathways that regulate appetitive behaviors directed at obtaining ethanol. Finally, increased operant self-administration of food and ethanol by female wild-type mice was absent in female RII,,/, mice, suggesting that normal PKA signaling may be part of a general, and sex-dependent, mechanism involved with reinforcement-seeking behavior. [source]


Are CB1 receptor antagonists nootropic or cognitive impairing agents?

DRUG DEVELOPMENT RESEARCH, Issue 8 2009
Stephen A. Varvel
Abstract For more than a decade, a considerable amount of research has examined the effects of rimonabant (SR 141716) and other CB1 receptor antagonists in both in vivo and in vitro models of learning and memory. In addition to its utility in determining whether the effects of drugs are mediated though a CB1 receptor mechanism of action, these antagonists are useful in providing insight into the physiological function of the endogenous cannabinoid system. Several groups have reported that CB1 receptor antagonists enhance memory duration in a variety of spatial and operant paradigms, but not in all paradigms. Conversely, disruption of CB1 receptor signaling also impairs extinction learning in which the animal actively suppresses a learned response when reinforcement has been withheld. These extinction deficits occur in aversively motivated tasks, such as in fear conditioning or escape behavior in the Morris water maze task, but not in appetitively motivated tasks. Similarly, in electrophysiological models, CB1 receptor antagonists elicit a variety of effects, including enhancement of long-term potentiation (LTP), while disrupting long-term depression (LTD) and interfering with transient forms of plasticity, including depolarization-induced suppression of inhibition (DSI) and depolarization-induced suppression of excitation (DSE). The collective results of the in vivo and in vitro studies employing CB1 receptor antagonists, demonstrate that these receptors play integral roles in different components of cognitive processing. Functionally, pharmacological blockade of CB1 receptors may strengthen memory duration, but interferes with extinction of learned behaviors that are associated with traumatic or aversive memories. Drug Dev Res 70:555,565, 2009. © 2009 Wiley-Liss, Inc. [source]