Open Field Test (open + field_test)

Distribution by Scientific Domains


Selected Abstracts


Influence of parental deprivation on the behavioral development in Octodon degus: Modulation by maternal vocalizations

DEVELOPMENTAL PSYCHOBIOLOGY, Issue 3 2003
Katharina Braun
Abstract Repeated separation from the family during very early stages of life is a stressful emotional experience which induces a variety of neuronal and synaptic changes in limbic cortical areas that may be related to behavioral alterations. First, we investigated whether repeated parental separation and handling, without separation from the family, leads to altered spontaneous exploratory behavior in a novel environment (open field test) in 8-day-old Octodon degus. Second, we tested whether the parentally deprived and handled animals display different stimulus-evoked exploratory behaviors in a modified open field version, in which a positive emotional stimulus, the maternal call, was presented. In the open field test a significant influence of previous emotional experience was found for the parameters of running, rearing, and vocalization. Parentally deprived degus displayed increased horizontal (running) and vertical (rearing) motoric activities, but decreased vocalization, compared to normal and handled controls. The presentation of maternal vocalizations significantly modified running, vocalization, and grooming activities, which in the case of running activity was dependent on previous emotional experience. Both deprivation-induced locomotor hyperactivity together with the reduced behavioral response towards a familiar acoustic emotional signal are similar to behavioral disturbances observed in human attachment disorders. © 2003 Wiley Periodicals, Inc. Dev Psychobiol 42: 237,245, 2003. [source]


Pentylenetetrazol-induced Recurrent Seizures in Rat Pups: Time Course on Spatial Learning and Long-term Effects

EPILEPSIA, Issue 6 2002
Li-Tung Huang
Summary: ,Purpose: Recurrent seizures in infants are associated with a high incidence of neurocognitive deficits. Animal models have suggested that the immature brain is less vulnerable to seizure-induced injury than is that in adult animals. We studied the effects of recurrent neonatal seizures on cognitive tasks performed when the animals were in adolescence and adulthood. Methods: Seizures were induced by intraperitoneal injection of pentylenetetrazol (PTZ) for 5 consecutive days, starting from postnatal day 10 (P10). At P35 and P60, rats were tested for spatial memory by using the Morris water maze task. In adulthood, motor performance was examined by the Rotarod test, and activity level was assessed by the open field test. Seizure threshold was examined by inhalant flurothyl. To assess presence or absence of spontaneous seizures, rats were video recorded for 4 h/day for 10 consecutive days for the detection of spontaneous seizures. Finally, brains were examined for histologic evidence of injury with cresyl violet stain and Timm staining in the supragranular zone and CA3 pyramidal cell layers of the hippocampus. Results: PTZ-treated rats showed significant spatial deficits in the Morris water maze at both P35 and P60. There were no differences in seizure threshold, motor balance, or activity level during the open field test. Spontaneous seizures were not recorded in any rat. The cresyl violet stain showed no cell loss in either the control or experimental rats. PTZ-treated rats exhibited more Timm staining in the CA3 subfield. However, the control and experimental rats showed similar Timm staining within the supragranular zone. Conclusions: Our findings indicate that recurrent PTZ-induced seizures result in long-term cognitive deficits and morphologic changes in the developing brain. Furthermore, these cognitive deficits could be detected during pubescence. [source]


Alcohol tolerance and nicotine cross-tolerance in adolescent mice

ADDICTION BIOLOGY, Issue 2 2001
Marcelo F. Lopez
The present experiment was designed to evaluate the development of tolerance to alcohol and cross-tolerance to nicotine in adolescent mice. C57BL/6J mice (30,40 days old) were injected IP with alcohol (2.5 g/kg) for 4 consecutive days. A control group received four saline injections. On the test day, all subjects received an alcohol injection. Tolerance to alcohol's hypothermic effect was observed. Mice (male and female) exposed to alcohol for the 4 previous days showed less hypothermic response to an alcohol challenge than animals injected for 4 days with saline and then challenged with alcohol. Tolerance to alcohol's motor incoordinating effects and differences in blood alcohol concentrations were not observed. Thirty days following alcohol treatment, the same mice received a single nicotine injection (1 mg/kg) to assess cross-tolerance. Nicotine's effect on locomotor activity (open field test) and rectal temperature varied as a function of prior adolescent alcohol exposure and gender. Specifically, female mice who had been exposed to alcohol administrations were more resistant to nicotine's effect on locomotion and temperature than saline-treated animals. In summary, these data demonstrate that adolescent mice develop tolerance to some, but not all, alcohol-induced responses, and that female mice are cross-tolerant to nicotine's effects on temperature and activity. [source]


Cerebellar contribution to spatial event processing: do spatial procedures contribute to formation of spatial declarative knowledge?

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 9 2003
L. Mandolesi
Abstract Spatial knowledge of an environment involves two distinct competencies: declarative spatial knowledge, linked to where environmental cues are and where the subject is with respect to the cues, and, at the same time, procedural spatial knowledge, linked to how to move into the environment. It has been previously demonstrated that hemicerebellectomized (HCbed) rats are impaired in developing efficient exploration strategies, but not in building spatial maps or in utilizing localizing cues. The aim of the present study was to analyse the relationships between spatial procedural and declarative knowledge by using the open field test. HCbed rats have been tested in two different protocols of the open field task. The results indicate that HCbed animals succeeded in moving inside the arena, in contacting the objects and in habituating to the new environment. However, HCbed animals did not react to environmental changes, when their impaired explorative pattern was inappropriate to the environment, suggesting that they were not able to represent a new environment because they were not able to explore it appropriately. Nevertheless, when their altered procedures were favoured by object arrangement, they detected environmental changes as efficiently as did normal rats. This finding suggests that no declarative spatial learning is possible without appropriate procedural spatial learning. [source]


Vinylic telluride derivatives as promising pharmacological compounds with low toxicity

JOURNAL OF APPLIED TOXICOLOGY, Issue 7 2008
V. C. Borges
Abstract The aim of the present study was to evaluate pharmacological and toxicological properties of (Z)-2-(methylthio)-1-(butyltelluro)-1-phenylethene 1a, (Z)-1-(4-methylphenylsulfonyl)-2-(phenyltelluro)-2-phenylethene 1b, (Z)-2-(butyltelluro)-1-(benzylthio)-1-heptene 1c and (Z)-2-(phenylthio)-1-(butyltelluro)-1-phenylethene 1d. In vitro, vinylic telluride derivatives 1a, 1d and 1c were more effective in reducing lipid peroxidation than compound 1b. The maximal inhibitory effect of vinylic telluride derivatives on lipid peroxidation was in the following order: 1a = 1d > 1c > 1b. Compound 1b was more potent in inhibiting , -ALA-D activity (, -aminolevulinate dehydratase) than compounds 1c and 1d. Based on the in vitro properties presented by compounds 1a (an antioxidant) and 1b (a pro-oxidant), toxicological parameters were assessed in vivo and ex vivo in rats. Calculated LD50 of compounds 1a and 1b, administered by oral route, were 20.5 and 1.44 µmol kg,1, respectively. Compound 1b induced behavioral alterations in the open field test. Renal and spleenic , -ALA-D activities were inhibited in rats treated orally with compound 1a. Compound 1b stimulated , -ALA-D activity in liver and spleen of rats. Rats treated with compound 1b had increased hepatic, renal and spleenic lipid peroxidation. Renal and hepatic markers were not altered when compounds 1a and 1b were administered to rats at doses of around LD50, while compound 1a at high doses changed aspartate aminotransferase activity and urea levels. Based on in vitro results, this study demonstrated that compounds 1a and 1d are promising antioxidant compounds. Ex vivo data reinforce compound 1a as a promising drug for more detailed pharmacological studies. Copyright © 2008 John Wiley & Sons, Ltd. [source]


C1473G polymorphism in mouse tph2 gene is linked to tryptophan hydroxylase-2 activity in the brain, intermale aggression, and depressive-like behavior in the forced swim test

JOURNAL OF NEUROSCIENCE RESEARCH, Issue 5 2009
Daria V. Osipova
Abstract Tryptophan hydroxylase-2 (TPH2) is the rate-limiting enzyme of brain serotonin synthesis. The C1473G polymorphism in the mouse tryptophan hydroxylase-2 gene affects the enzyme's activity. In the present study, we investigated the linkage between the C1473G polymorphism, enzyme activity in the brain, and behavior in the forced swim, intermale aggression, and open field tests using mice of the C57BL/6 (C/C) and CC57BR/Mv (G/G) strains and the B6-1473C (C/C) and B6-1473G (G/G) lines created by three successive backcrossings on C57BL/6. Mice of the CC57BR/Mv strain had decreased brain enzyme activity, aggression intensity, and immobility in the forced swim test, but increased locomotor activity and time spent in the central part of the open field arena compared with animals of the C57BL/6 strain. Mice of the B6-1473G line homozygous for the 1473G allele had lower TPH2 activity in the brain, aggression intensity, and immobility time in the forced swim test compared with animals of the B6-1473C line homozygous for the 1473C allele. No differences were found between the B6-1473G and B6-1473C mice in locomotor activity and time spent in the central part of the arena in the open field test. Thus, the C1473G polymorphism is involved in the determination of TPH2 activity and is linked to aggression intensity and forced-swim immobility in mice. At the same time, the polymorphism does not affect locomotion and anxiety-related behavior in the open field test. The B6-1473C and B6-1473G mice represent a valuable experimental model for investigating molecular mechanisms of serotonin-related behavior. © 2008 Wiley-Liss, Inc. [source]


Effect of crocus sativus L. (saffron) stigma and its constituents, crocin and safranal, on morphine withdrawal syndrome in mice

PHYTOTHERAPY RESEARCH, Issue 5 2010
Hossein Hosseinzadeh
Abstract Crocus sativus L. has been shown to interact with the opioid system. Thus, the effects of aqueous and ethanolic extracts of stigma and its constituents were evaluated on morphine-withdrawal syndrome in mice. Dependence was induced using subcutaneous (s.c.) injections of morphine for 3 days. On day 4, morphine was injected 0.5,h prior the interaperitoneal (i.p.) injections of the extracts, crocin, safranal, clonidine (0.3,mg/kg) or normal saline. Naloxone was injected (5,mg/kg i.p.) 2,h after the final dose of morphine and the number of episodes of jumping during 30,mm was considered as the intensity of the withdrawal syndrome. Clonidine, the aqueous and ethanolic extracts of saffron reduced the jumping activity. Safranal was injected (s.c.) 30,mm prior and 1 and 2,h after the injection of morphine. It potentiated some signs of withdrawal syndrome. The aqueous extract decreased the movement in all of the doses (80, 160, 320,mg/kg) and the ethanolic extract decreased it in the dose of 800,mg/kg in open field test. But crocin and the dose of 400,mg/kg ethanolic extract showed no effect on activity in this test. It is concluded that the extracts and crocin may have interaction with the opioid system to reduce withdrawal syndrome. Copyright © 2009 John Wiley & Sons, Ltd. [source]


Differential effects of three species of Hypericum in an open field test

PHYTOTHERAPY RESEARCH, Issue 3 2007
Giovanni Diana
Abstract The effects of three species of Hypericum (H.) on mice motor activity were compared in an automated open field test. Methanol extracts of H. perforatum L., H. hircinum L. and H. perfoliatum L. were tested at doses ranging from 2.5 to 200 mg i.p. H. hircinum decreased locomotion at most dose levels. Moreover, a dose of 200 mg/kg of all three herbal species sharply decreased motor activity. Ten mg/kg of H. perforatum, a dose that is comparable to that endowed with antidepressant effects in humans, tended to increase exploration and stereotypic activity and to decrease immobility. The study suggests that there are differences in the neuropharmacological actions of the three plant extracts. However, common constituents might explain the reduced motor activity observed at high dose levels. Copyright © 2006 John Wiley & Sons, Ltd. [source]


Lesioning of Locus coeruleus Projections by DSP-4 Neurotoxin Treatment: Effect on Amphetamine-Induced Hyperlocomotion and Dopamine D2 Receptor Binding in Rats

BASIC AND CLINICAL PHARMACOLOGY & TOXICOLOGY, Issue 5 2000
Jaanus Harro
DSP-4 is a neurotoxin highly selective for the noradrenergic nerve terminals of the locus coeruleus projections. Data on the effect of DSP-4 treatment on amphetamine-induced hyperlocomotion are contradictory. In this study, DSP-4 (50 mg/kg) caused reduction of noradrenaline levels by 70% in the cerebral cortex and by 79% in the cerebellum. This treatment resulted in upregulation of dopamine D2 receptors in the striatum as evidenced by [3H]-raclopride binding. In an open field test, DSP-4 reduced locomotor activity. D -Amphetamine (1.5 mg/kg) caused a similar increase in locomotor activity in control and DSP-4-pretreated animals not familiar to the apparatus. However, when the rats were habituated to the test apparatus, the effect of amphetamine on horizontal activity was significantly larger in the DSP-4-pretreated animals. These data suggest that supersensitivity of D2 receptors develops after locus coeruleus denervation, but that the enhanced efficacy of amphetamine in DSP-4-treated rats is masked by neophobia. [source]


Hypolocomotion, anxiety and serotonin syndrome-like behavior contribute to the complex phenotype of serotonin transporter knockout mice

GENES, BRAIN AND BEHAVIOR, Issue 4 2007
A. V. Kalueff
Although mice with a targeted disruption of the serotonin transporter (SERT) have been studied extensively using various tests, their complex behavioral phenotype is not yet fully understood. Here we assess in detail the behavior of adult female SERT wild type (+/+), heterozygous (+/,) and knockout (,/,) mice on an isogenic C57BL/6J background subjected to a battery of behavioral paradigms. Overall, there were no differences in the ability to find food or a novel object, nest-building, self-grooming and its sequencing, and horizontal rod balancing, indicating unimpaired sensory functions, motor co-ordination and behavioral sequencing. In contrast, there were striking reductions in exploration and activity in novelty-based tests (novel object, sticky label and open field tests), accompanied by pronounced thigmotaxis, suggesting that combined hypolocomotion and anxiety (rather than purely anxiety) influence the SERT ,/, behavioral phenotype. Social interaction behaviors were also markedly reduced. In addition, SERT ,/, mice tended to move close to the ground, frequently displayed spontaneous Straub tail, tics, tremor and backward gait , a phenotype generally consistent with ,serotonin syndrome'-like behavior. In line with replicated evidence of much enhanced serotonin availability in SERT ,/, mice, this serotonin syndrome-like state may represent a third factor contributing to their behavioral profile. An understanding of the emerging complexity of SERT ,/, mouse behavior is crucial for a detailed dissection of their phenotype and for developing further neurobehavioral models using these mice. [source]


C1473G polymorphism in mouse tph2 gene is linked to tryptophan hydroxylase-2 activity in the brain, intermale aggression, and depressive-like behavior in the forced swim test

JOURNAL OF NEUROSCIENCE RESEARCH, Issue 5 2009
Daria V. Osipova
Abstract Tryptophan hydroxylase-2 (TPH2) is the rate-limiting enzyme of brain serotonin synthesis. The C1473G polymorphism in the mouse tryptophan hydroxylase-2 gene affects the enzyme's activity. In the present study, we investigated the linkage between the C1473G polymorphism, enzyme activity in the brain, and behavior in the forced swim, intermale aggression, and open field tests using mice of the C57BL/6 (C/C) and CC57BR/Mv (G/G) strains and the B6-1473C (C/C) and B6-1473G (G/G) lines created by three successive backcrossings on C57BL/6. Mice of the CC57BR/Mv strain had decreased brain enzyme activity, aggression intensity, and immobility in the forced swim test, but increased locomotor activity and time spent in the central part of the open field arena compared with animals of the C57BL/6 strain. Mice of the B6-1473G line homozygous for the 1473G allele had lower TPH2 activity in the brain, aggression intensity, and immobility time in the forced swim test compared with animals of the B6-1473C line homozygous for the 1473C allele. No differences were found between the B6-1473G and B6-1473C mice in locomotor activity and time spent in the central part of the arena in the open field test. Thus, the C1473G polymorphism is involved in the determination of TPH2 activity and is linked to aggression intensity and forced-swim immobility in mice. At the same time, the polymorphism does not affect locomotion and anxiety-related behavior in the open field test. The B6-1473C and B6-1473G mice represent a valuable experimental model for investigating molecular mechanisms of serotonin-related behavior. © 2008 Wiley-Liss, Inc. [source]