Home About us Contact | |||
Open Clusters (open + cluster)
Selected AbstractsOpen clusters and the galactic diskASTRONOMISCHE NACHRICHTEN, Issue 5 2010S. Röser Abstract It is textbook knowledge that open clusters are conspicuous members of the thin disk of our Galaxy, but their role as contributors to the stellar population of the disk was regarded as minor. Starting from a homogenous stellar sky survey, the ASCC-2.5, we revisited the population of open clusters in the solar neighbourhood from scratch. In the course of this enterprise we detected 130 formerly unknown open clusters, constructed volume- and magnitude-limited samples of clusters, re-determined distances, motions, sizes, ages, luminosities and masses of 650 open clusters. We derived the present-day luminosity and mass functions of open clusters (not the stellar mass function in open clusters), the cluster initial mass function CIMF and the formation rate of open clusters. We find that open clusters contributed around 40 percent to the stellar content of the disk during the history of our Galaxy. Hence, open clusters are important building blocks of the Galactic disk (© 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] The Monitor project: rotation periods of low-mass stars in M50MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 4 2009Jonathan Irwin ABSTRACT We report on the results of a time-series photometric survey of M50 (NGC 2323), a ,130 Myr open cluster, carried out using the Cerro Tololo Inter-American Observatory (CTIO) 4-m Blanco telescope and Mosaic-II detector as part of the Monitor project. Rotation periods were derived for 812 candidate cluster members over the mass range 0.2 ,M/M,, 1.1. The rotation period distributions show a clear mass-dependent morphology, statistically indistinguishable from those in NGC 2516 and M35 taken from the literature. Due to the availability of data from three observing runs separated by ,10 and 1 month time-scales, we are able to demonstrate clear evidence for evolution of the photometric amplitudes, and hence spot patterns, over the 10 month gap. We are not able to constrain the time-scales for these effects in detail due to limitations imposed by the large gaps in our sampling, which also prevent the use of the phase information. [source] The Monitor project: the search for transits in the open cluster NGC 2362MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 1 2008Adam A. Miller ABSTRACT We present the results of a systematic search for transiting planets in a ,5 Myr open cluster, NGC 2362. We observed ,1200 candidate cluster members, of which ,475 are believed to be genuine cluster members, for a total of ,100 h. We identify 15 light curves with reductions in flux that pass all our detection criteria, and six of the candidates have occultation depths compatible with a planetary companion. The variability in these six light curves would require very large planets to reproduce the observed transit depth. If we assume that none of our candidates are, in fact, planets then we can place upper limits on the fraction of stars with hot Jupiters (HJs) in NGC 2362. We obtain 99 per cent confidence upper limits of 0.22 and 0.70 on the fraction of stars with HJs (fp) for 1,3 and 3,10 d orbits, respectively, assuming all HJs have a planetary radius of 1.5RJup. These upper limits represent observational constraints on the number of stars with HJs at an age ,10 Myr, when the vast majority of stars are thought to have lost their protoplanetary discs. Finally, we extend our results to the entire Monitor project, a survey searching young, open clusters for planetary transits, and find that the survey as currently designed should be capable of placing upper limits on fp near the observed values of fp in the solar neighbourhood. [source] Eclipsing binaries in open clusters , III.MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 3 2004Persei, V621 Per in ABSTRACT V621 Persei is a detached eclipsing binary in the open cluster , Persei, which is composed of an early B-type giant star and a main-sequence secondary component. From high-resolution spectroscopic observations and radial velocities from the literature, we determine the orbital period to be 25.5 d and the primary velocity semi-amplitude to be K= 64.5 ± 0.4 km s,1. No trace of the secondary star has been found in the spectrum. We solve the discovery light curves of this totally eclipsing binary and find that the surface gravity of the secondary star is log gB= 4.244 ± 0.054. We compare the absolute masses and radii of the two stars in the mass,radius diagram, for different possible values of the primary surface gravity, with the predictions of stellar models. We find that log gA, 3.55, in agreement with values found from fitting Balmer lines with synthetic profiles. The expected masses of the two stars are 12 and 6 M, and the expected radii are 10 and 3 R,. The primary component is near the blue loop stage in its evolution. [source] The empirical upper limit for mass loss of cool main sequence starsASTRONOMISCHE NACHRICHTEN, Issue 4 2008A. Lednicka Abstract The knowledge of mass loss rates due to thermal winds in cool dwarfs is of crucial importance for modeling the evolution of physical parameters of main sequence single and binary stars. Very few, sometimes contradictory, measurements of such mass loss rates exist up to now. We present a new, independent method of measuring an amount of mass lost by a star during its past life. It is based on the comparison of the present mass distribution of solar type stars in an open cluster with the calculated distribution under an assumption that stars with masses lower than Mlim have lost an amount of mass equal to ,M. The actual value of ,M or its upper limit is found from the best fit. Analysis of four clusters: Pleiades, NGC 6996, Hyades and Praesepe gave upper limits for ,M in three of them and the inconclusive result for Pleiades. The most restrictive limit was obtained for Praesepe indicating that the average mass loss rate of cool dwarfs in this cluster was lower than 6 × 10,11 M,/yr. With more accurate mass determinations of the solar type members of selected open clusters, including those of spectral type K, the method will provide more stringent limits for mass loss of cool dwarfs. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] The Monitor project: the search for transits in the open cluster NGC 2362MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 1 2008Adam A. Miller ABSTRACT We present the results of a systematic search for transiting planets in a ,5 Myr open cluster, NGC 2362. We observed ,1200 candidate cluster members, of which ,475 are believed to be genuine cluster members, for a total of ,100 h. We identify 15 light curves with reductions in flux that pass all our detection criteria, and six of the candidates have occultation depths compatible with a planetary companion. The variability in these six light curves would require very large planets to reproduce the observed transit depth. If we assume that none of our candidates are, in fact, planets then we can place upper limits on the fraction of stars with hot Jupiters (HJs) in NGC 2362. We obtain 99 per cent confidence upper limits of 0.22 and 0.70 on the fraction of stars with HJs (fp) for 1,3 and 3,10 d orbits, respectively, assuming all HJs have a planetary radius of 1.5RJup. These upper limits represent observational constraints on the number of stars with HJs at an age ,10 Myr, when the vast majority of stars are thought to have lost their protoplanetary discs. Finally, we extend our results to the entire Monitor project, a survey searching young, open clusters for planetary transits, and find that the survey as currently designed should be capable of placing upper limits on fp near the observed values of fp in the solar neighbourhood. [source] Displacement of the Sun from the Galactic planeMONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 2 2007Y. C. Joshi ABSTRACT We have carried out a comparative statistical study for the displacement of the Sun from the Galactic plane (z,) following three different methods. The study has been carried out using a sample of 537 young open clusters (YOCs) with log (Age) < 8.5, lying within a heliocentric distance of 4 kpc, and 2030 OB stars observed up to a distance of 1200 pc, all of which have distance information. We statistically separated the members of the Gould Belt before investigating the variation in the z, estimation with different upper cut-off limits in the heliocentric distance and distance perpendicular to the Galactic plane. We have found that z, varies in the range ,13,20 pc from the analysis of YOCs and in the range ,6,28 pc from the analysis of OB stars. A significant scatter in z,, because of different cut-off values, is noticed for the OB stars, although no such deviation is seen for the YOCs. We have also determined scaleheights of 56.9+3.8,3.4 and 61.4+2.7,2.4 pc for the distribution of YOCs and OB stars, respectively. [source] A systematic survey for infrared star clusters with |b| < 20° using 2MASSMONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 2 2007D. Froebrich ABSTRACT We used star density maps obtained from the Two-Micron All-Sky Survey (2MASS) to obtain a sample of star clusters in the entire Galactic Plane with |b| < 20°. A total of 1788 star cluster candidates are identified in this survey. Among those are 681 previously known open clusters and 86 globular clusters. A statistical analysis indicates that our sample of 1021 new cluster candidates has a contamination of about 50 per cent. Star cluster parameters are obtained by fitting a King profile to the star density. These parameters are used to statistically identify probable new globular cluster candidates in our sample. A detailed investigation of the projected distribution of star clusters in the Galaxy demonstrates that they show a clear tendency to cluster on spatial scales in the order of 12,25 pc, a typical size for molecular clouds. [source] Eclipsing binaries in open clusters , III.MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 3 2004Persei, V621 Per in ABSTRACT V621 Persei is a detached eclipsing binary in the open cluster , Persei, which is composed of an early B-type giant star and a main-sequence secondary component. From high-resolution spectroscopic observations and radial velocities from the literature, we determine the orbital period to be 25.5 d and the primary velocity semi-amplitude to be K= 64.5 ± 0.4 km s,1. No trace of the secondary star has been found in the spectrum. We solve the discovery light curves of this totally eclipsing binary and find that the surface gravity of the secondary star is log gB= 4.244 ± 0.054. We compare the absolute masses and radii of the two stars in the mass,radius diagram, for different possible values of the primary surface gravity, with the predictions of stellar models. We find that log gA, 3.55, in agreement with values found from fitting Balmer lines with synthetic profiles. The expected masses of the two stars are 12 and 6 M, and the expected radii are 10 and 3 R,. The primary component is near the blue loop stage in its evolution. [source] Open clusters and the galactic diskASTRONOMISCHE NACHRICHTEN, Issue 5 2010S. Röser Abstract It is textbook knowledge that open clusters are conspicuous members of the thin disk of our Galaxy, but their role as contributors to the stellar population of the disk was regarded as minor. Starting from a homogenous stellar sky survey, the ASCC-2.5, we revisited the population of open clusters in the solar neighbourhood from scratch. In the course of this enterprise we detected 130 formerly unknown open clusters, constructed volume- and magnitude-limited samples of clusters, re-determined distances, motions, sizes, ages, luminosities and masses of 650 open clusters. We derived the present-day luminosity and mass functions of open clusters (not the stellar mass function in open clusters), the cluster initial mass function CIMF and the formation rate of open clusters. We find that open clusters contributed around 40 percent to the stellar content of the disk during the history of our Galaxy. Hence, open clusters are important building blocks of the Galactic disk (© 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] Eclipsing binaries in the MOST satellite fieldsASTRONOMISCHE NACHRICHTEN, Issue 4 2010T. Pribulla Abstract Sixteen new eclipsing binaries have been discovered by the MOST satellite among guide stars used to point its telescope in various fields. Several previously known eclipsing binaries were also observed by MOST with unprecedented quality. Among the objects we discuss in more detail are short-period eclipsing binaries with eccentric orbits in young open clusters: V578 Mon in NGC 2244 and HD 47934 in NGC 2264. Long nearly-continuous photometric runs made it possible to discover three long-period eclipsing binaries with orbits seen almost edge-on: HD 45972 with P = 28.1 days and two systems (GSC 154 1247 and GSC 2141 526) with P > 25 days. The high precision of the satellite data led to discoveries of binaries with very shallow eclipses (e.g., HD 46180 with A = 0.016 mag, and HD 47934 with A = 0.025 mag). Ground-based spectroscopy to support the space-based photometry was used to refine the models of several of the systems (© 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] Finding the most variable stars in the Orion Belt with the All Sky Automated SurveyASTRONOMISCHE NACHRICHTEN, Issue 3 2010J.A. Caballero Abstract We look for high-amplitude variable young stars in the open clusters and associations of the Orion Belt. We use public data from the ASAS-3 Photometric V -band Catalogue of the All Sky Automated Survey, infrared photometry from the 2MASS and IRAS catalogues, proper motions, and the Aladin sky atlas to obtain a list of the most variable stars in a survey area of side 5° centred on the bright star Alnilam (, Ori) in the centre of the Orion Belt. We identify 32 highly variable stars, of which 16 had not been reported to vary before. They are mostly variable young stars and candidates (16) and background giants (8), but there are also field cataclysmic variables, contact binaries, and eclipsing binary candidates. Of the young stars, which typically are active Herbig Ae/Be and T Tauri stars with H, emission and infrared flux excess, we discover four new variables and confirm the variability status of another two. Some of them belong to the well known , Orionis cluster. Besides, six of the eight giants are new variables, and three are new periodic variables (© 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] The empirical upper limit for mass loss of cool main sequence starsASTRONOMISCHE NACHRICHTEN, Issue 4 2008A. Lednicka Abstract The knowledge of mass loss rates due to thermal winds in cool dwarfs is of crucial importance for modeling the evolution of physical parameters of main sequence single and binary stars. Very few, sometimes contradictory, measurements of such mass loss rates exist up to now. We present a new, independent method of measuring an amount of mass lost by a star during its past life. It is based on the comparison of the present mass distribution of solar type stars in an open cluster with the calculated distribution under an assumption that stars with masses lower than Mlim have lost an amount of mass equal to ,M. The actual value of ,M or its upper limit is found from the best fit. Analysis of four clusters: Pleiades, NGC 6996, Hyades and Praesepe gave upper limits for ,M in three of them and the inconclusive result for Pleiades. The most restrictive limit was obtained for Praesepe indicating that the average mass loss rate of cool dwarfs in this cluster was lower than 6 × 10,11 M,/yr. With more accurate mass determinations of the solar type members of selected open clusters, including those of spectral type K, the method will provide more stringent limits for mass loss of cool dwarfs. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] Evolution of magnetic fields in stars across the upper main sequence: II.ASTRONOMISCHE NACHRICHTEN, Issue 6 2007Observed distribution of the magnetic field geometry Abstract We re-discuss the evolutionary state of upper main sequence magnetic stars using a sample of Ap and Bp stars with accurate Hipparcos parallaxes and definitely determined longitudinal magnetic fields. We confirm our previous results obtained from the study of Ap and Bp stars with accurate measurements of the mean magnetic field modulus and mean quadratic magnetic fields that magnetic stars of mass M < 3 M, are concentrated towards the centre of the main-sequence band. In contrast, stars with masses M > 3 M, seem to be concentrated closer to the ZAMS. The study of a few known members of nearby open clusters with accurate Hipparcos parallaxes confirms these conclusions. Stronger magnetic fields tend to be found in hotter, younger and more massive stars, as well as in stars with shorter rotation periods. The longest rotation periods are found only in stars which spent already more than 40% of their main sequence life, in the mass domain between 1.8 and 3 M, and with log g values ranging from 3.80 to 4.13. No evidence is found for any loss of angular momentum during the main-sequence life. The magnetic flux remains constant over the stellar life time on the main sequence. An excess of stars with large obliquities , is detected in both higher and lower mass stars. It is quite possible that the angle , becomes close to 0. in slower rotating stars of mass M > 3 M, too, analog to the behaviour of angles , in slowly rotating stars of M < 3 M,. The obliquity angle distribution as inferred from the distribution of r -values appears random at the time magnetic stars become observable on the H-R diagram. After quite a short time spent on the main sequence, the obliquity angle , tends to reach values close to either 90. or 0. for M < 3 M,. The evolution of the obliquity angle , seems to be somewhat different for low and high mass stars. While we find a strong hint for an increase of , with the elapsed time on the main sequence for stars with M > 3 M,, no similar trend is found for stars with M < 3 M,. However, the predominance of high values of , at advanced ages in these stars is notable. As the physics governing the processes taking place in magnetised atmospheres remains poorly understood, magnetic field properties have to be considered in the framework of dynamo or fossil field theories. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] Monitor : transiting planets and brown dwarfs in star forming regions and young open clusters,ASTRONOMISCHE NACHRICHTEN, Issue 1 2006S. T. Hodgkin Abstract The Monitor project, is a large scale photometric monitoring survey of ten star forming regions and open clusters aged between 1 and 200 Myr using wide-field optical cameras on 2,4 m telescopes worldwide. The primary goal of the project is to search for close-in planets and brown dwarfs at young ages through the detection of transit events. Such detections would provide unprecedented constraints on planet formation and migration time-scales, as well as on evolutionary models of planets and brown dwarfs in an age range where such constraints are very scarce. Additional science goals include rotation period measurements and the analysis of flares and accretion-related variability. (© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] |