Home About us Contact | |||
Open Challenge (open + challenge)
Selected AbstractsDecisional autonomy of planetary roversJOURNAL OF FIELD ROBOTICS (FORMERLY JOURNAL OF ROBOTIC SYSTEMS), Issue 7 2007Félix Ingrand To achieve the ever increasing demand for science return, planetary exploration rovers require more autonomy to successfully perform their missions. Indeed, the communication delays are such that teleoperation is unrealistic. Although the current rovers (such as MER) demonstrate a limited navigation autonomy, and mostly rely on ground mission planning, the next generation (e.g., NASA Mars Science Laboratory and ESA Exomars) will have to regularly achieve long range autonomous navigation tasks. However, fully autonomous long range navigation in partially known planetary-like terrains is still an open challenge for robotics. Navigating hundreds of meters without any human intervention requires the robot to be able to build adequate representations of its environment, to plan and execute trajectories according to the kind of terrain traversed, to control its motions, and to localize itself as it moves. All these activities have to be planned, scheduled, and performed according to the rover context, and controlled so that the mission is correctly fulfilled. To achieve these objectives, we have developed a temporal planner and an execution controller, which exhibit plan repair and replanning capabilities. The planner is in charge of producing plans composed of actions for navigation, science activities (moving and operating instruments), communication with Earth and with an orbiter or a lander, while managing resources (power, memory, etc.) and respecting temporal constraints (communication visibility windows, rendezvous, etc.). High level actions also need to be refined and their execution temporally and logically controlled. Finally, in such critical applications, we believe it is important to deploy a component that protects the system against dangerous or even fatal situations resulting from unexpected interactions between subsystems (e.g., move the robot while the robot arm is unstowed) and/or software components (e.g., take and store a picture in a buffer while the previous one is still being processed). In this article we review the aforementioned capabilities, which have been developed, tested, and evaluated on board our rovers (Lama and Dala). After an overview of the architecture design principle adopted, we summarize the perception, localization, and motion generation functions required by autonomous navigation, and their integration and concurrent operation in a global architecture. We then detail the decisional components: a high level temporal planner that produces the robot activity plan on board, and temporal and procedural execution controllers. We show how some failures or execution delays are being taken care of with online local repair, or replanning. © 2007 Wiley Periodicals, Inc. [source] Aquatic science and the water framework directive: a still open challenge towards ecogovernance of aquatic ecosystemsAQUATIC CONSERVATION: MARINE AND FRESHWATER ECOSYSTEMS, Issue 3 2010Alberto Basset First page of article [source] Solid,Solid Phase Transitions: Interface Controlled Reactivity and Formation of Intermediate StructuresCHEMISTRY - A EUROPEAN JOURNAL, Issue 36 2007Stefano Leoni Dr. Abstract Finding new pathways to novel materials is an open challenge in modern solid-state chemistry. Among the reasons that still prevent a rational planning of synthetic routes is the lack of an atomistic understanding at the moment of phase formation. Metastable phases are, in this respect, powerful points of access to new materials. For the synthetic efforts to fully take advantage of such peculiar intermediates, a precise atomistic understanding of critical processes in the solid state in its many facets, that is, nucleation patterns, formation and propagation of interfaces, intermediate structures, and phase growth, is mandatory. Recently we have started a systematic theoretical study of phase transitions, especially of processes with first-order thermodynamics, to reach a firm understanding of the atomistic mechanisms governing polymorphism in the solid state. A clear picture is emerging of the interplay between nucleation patterns, the evolution of domain interfaces and final material morphology. Therein intermediate metastable structural motifs with distinct atomic patterns are identified, which become exciting targets for chemical synthesis. Accordingly, a new way of implementing simulation strategies as a powerful support to the chemical intuition is emerging. Simulations of real materials under conditions corresponding to the experiments are shedding light onto yet elusive aspects of solid,solid transformations. Particularly, sharp insights into local nucleation and growth events allow the formulation of new concepts for rationalizing interfaces formed during phase nucleation and growth. Structurally different and confined in space, metastable interfaces occurring during polymorph transformations bring about distinct diffusion behavior of the chemical species involved. More generally, stable structures emerge as a result of the concurrence of the transformation mechanism and of chemical reactions within the phase-growth fronts. [source] Surgical Suites' Operations ManagementPRODUCTION AND OPERATIONS MANAGEMENT, Issue 6 2007Diwakar Gupta Surgical suites are a key driver of a hospital's costs, revenues, and utilization of postoperative resources such as beds. This article describes some commonly occurring operations management problems faced by the managers of surgical suites. For three of these problems, the article also provides preliminary models and possible solution approaches. Its goal is to identify open challenges to spur further research by the operations management community on an important class of problems that have not received adequate attention in the literature, despite their economic importance. [source] |