OPLS-AA Force Field (opls-aa + force_field)

Distribution by Scientific Domains


Selected Abstracts


Accuracy of free energies of hydration using CM1 and CM3 atomic charges

JOURNAL OF COMPUTATIONAL CHEMISTRY, Issue 11 2004
Blagovi, Marina Udier
Abstract Absolute free energies of hydration (,Ghyd) have been computed for 25 diverse organic molecules using partial atomic charges derived from AM1 and PM3 wave functions via the CM1 and CM3 procedures of Cramer, Truhlar, and coworkers. Comparisons are made with results using charges fit to the electrostatic potential surface (EPS) from ab initio 6-31G* wave functions and from the OPLS-AA force field. OPLS Lennard,Jones parameters for the organic molecules were used together with the TIP4P water model in Monte Carlo simulations with free energy perturbation theory. Absolute free energies of hydration were computed for OPLS united-atom and all-atom methane by annihilating the solutes in water and in the gas phase, and absolute ,Ghyd values for all other molecules were computed via transformation to one of these references. Optimal charge scaling factors were determined by minimizing the unsigned average error between experimental and calculated hydration free energies. The PM3-based charge models do not lead to lower average errors than obtained with the EPS charges for the subset of 13 molecules in the original study. However, improvement is obtained by scaling the CM1A partial charges by 1.14 and the CM3A charges by 1.15, which leads to average errors of 1.0 and 1.1 kcal/mol for the full set of 25 molecules. The scaled CM1A charges also yield the best results for the hydration of amides including the E/Z free-energy difference for N -methylacetamide in water. © 2004 Wiley Periodicals, Inc. J Comput Chem 25: 1322,1332, 2004 [source]


A computationally inexpensive modification of the point dipole electrostatic polarization model for molecular simulations

JOURNAL OF COMPUTATIONAL CHEMISTRY, Issue 3 2003
George A. Kaminski
Abstract We present an approximation, which allows reduction of computational resources needed to explicitly incorporate electrostatic polarization into molecular simulations utilizing empirical force fields. The proposed method is employed to compute three-body energies of molecular complexes with dipolar electrostatic probes, gas-phase dimerization energies, and pure liquid properties for five systems that are important in biophysical and organic simulations,water, methanol, methylamine, methanethiol, and acetamide. In all the cases, the three-body energies agreed with high level ab initio data within 0.07 kcal/mol, dimerization energies,within 0.43 kcal/mol (except for the special case of the CH3SH), and computed heats of vaporization and densities differed from the experimental results by less than 2%. Moreover, because the presented method allows a significant reduction in computational cost, we were able to carry out the liquid-state calculations with Monte Carlo technique. Comparison with the full-scale point dipole method showed that the computational time was reduced by 3.5 to more than 20 times, depending on the system in hand and on the desired level of the full-scale model accuracy, while the difference in energetic results between the full-scale and the presented approximate model was not great in the most cases. Comparison with the nonpolarizable OPLS-AA force field for all the substances involved and with the polarizable POL3 and q90 models for water and methanol, respectively, demonstrates that the presented technique allows reduction of computational cost with no sacrifice of accuracy. We hope that the proposed method will be of benefit to research employing molecular modeling technique in the biophysical and physical organic chemistry areas. © 2003 Wiley Periodicals, Inc. J Comput Chem 24: 267,276, 2003 [source]


Spectroscopic Properties in the Liquid Phase: Combining High-Level Ab Initio Calculations and Classical Molecular Dynamics

CHEMPHYSCHEM, Issue 1 2006
Michele Pavone Dr.
Abstract We present an integrated computational tool, rooted in density functional theory, the polarizable continuum model, and classical molecular dynamics employing spherical boundary conditions, to study the spectroscopic observables of molecules in solution. As a test case, a modified OPLS-AA force field has been developed and used to compute the UV and NMR spectra of acetone in aqueous solution. The results show that provided the classical force fields are carefully reparameterized and validated, the proposed approach is robust and effective, and can also be used by nonspecialists to provide a general and powerful complement to experimental techniques. [source]


Modern protein force fields behave comparably in molecular dynamics simulations

JOURNAL OF COMPUTATIONAL CHEMISTRY, Issue 11 2002
Daniel J. Price
Abstract Several molecular dynamics simulations were performed on three proteins,bovine apo-calbindin D9K, human interleukin-4 R88Q mutant, and domain IIA of bacillus subtilis glucose permease,with each of the AMBER94, CHARMM22, and OPLS-AA force fields as implemented in CHARMM. Structural and dynamic properties such as solvent-accessible surface area, radius of gyration, deviation from their respective experimental structures, secondary structure, and backbone order parameters are obtained from each of the 2-ns simulations for the purpose of comparing the protein portions of these force fields. For one of the proteins, the interleukin-4 mutant, two independent simulations were performed using the CHARMM22 force field to gauge the sensitivity of some of these properties to the specific trajectory. In general, the force fields tested performed remarkably similarly with differences on the order of those found for the two independent trajectories of interleukin-4 with CHARMM22. When all three proteins are considered together, no force field showed any consistent trend in variations for most of the properties monitored in the study. © 2002 Wiley Periodicals, Inc. J Comput Chem 23: 1045,1057, 2002 [source]