Opitz Syndrome (opitz + syndrome)

Distribution by Scientific Domains


Selected Abstracts


Genes causing clefting syndromes as candidates for non-syndromic cleft lip with or without cleft palate: a family-based association study

EUROPEAN JOURNAL OF ORAL SCIENCES, Issue 6 2008
Luca Scapoli
Clefts of the orofacial region are among the most common congenital defects, caused by abnormal facial development during gestation. Non-syndromic cleft lip with or without cleft palate (NSCLP) is a complex trait most probably caused by multiple interacting loci, with possible additional environmental factors. As facial clefts form part of more than 300 syndromes, one strategy for identifying the genetic causes of NSCLP could be to study candidate genes responsible for clefting syndromes. Three genes were selected for this investigation: TP63, which codes for the tumour protein p63 and causes Ectrodactyly-Ectodermal dysplasia-orofacial Cleft syndrome; JAG2, a downstream gene of TP63; and MID1, which is responsible for Opitz syndrome. A linkage disequilibrium investigation was performed with intragenic single nucleotide polymorphisms on each of these genes in a sample study of 239 patients/parents trios. Evidence which suggests that JAG2 and MID1 may play a role in NSCLP was obtained. [source]


Cyclopia (synophthalmia) in Smith,Lemli,Opitz syndrome: First reported case and consideration of mechanism,

AMERICAN JOURNAL OF MEDICAL GENETICS, Issue 1 2010
David D. Weaver
Abstract Here we present a 24-week fetus with Smith,Lemli,Opitz syndrome (SLOS), alobar holoprosencephaly (HPE) and cyclopia (synophthalmia). Following birth, we suspected SLOS in this fetus due to the additional findings of ambiguous genitalia and bilateral 2,3 toe syndactyly. The diagnosis of SLOS was confirmed by finding an elevated amniotic fluid 7-dehydrocholesterol level (9,890,ng/ml; normal range,=,3,9,ng/ml), and molecularly by detecting two different mutations in the DHCR7 gene, the gene causing SLOS. The first mutation was an IVS8-1G>T change and the second was a deletion of exons 3 and 4; this latter mutation has not been reported previously. The mother carries the deletion, while the father carries the splice-site mutation. Also of note, the father has an abnormally low total plasma cholesterol level (104,109,mg/dl). This is the most severe case of HPE described in any patient with SLOS. We postulate that the HPE in this case resulted from severe impairment of Sonic Hedgehog signaling secondary to abnormal cholesterol metabolism; however, the unique combination of mutations in the fetus functionally appears to be no different from other homozygous null mutations reported in DHCR7. Therefore, there must be other yet to be identified factors that contributed to the severity of HPE in SLOS. © 2010 Wiley-Liss, Inc. [source]


Novel mutations in the 7-dehydrocholesterol reductase gene of 13 patients with Smith,Lemli,Opitz syndrome

ANNALS OF HUMAN GENETICS, Issue 3 2001
P. E. JIRA
Smith,Lemli,Opitz syndrome (SLOS) is caused by mutations in the DHCR7 gene leading to deficient activity of 7-dehydrocholesterol reductase (DHCR7; EC 1.3.1.21), the final enzyme of the cholesterol biosynthetic pathway, resulting in low cholesterol and high concentrations of its direct precursor 7-dehydrocholesterol in plasma and tissues. We here report mutations identified in the DHCR7 gene of 13 children diagnosed with SLOS by clinical and biochemical criteria. We found a high frequency of the previously described IVS8,1 G > C splice acceptor site mutation (two homozygotes, eight compound heterozygotes). In addition, 13 missense mutations and one splice acceptor mutation were detected in eleven patients with a mild to moderate SLOS-phenotype. The mutations include three novel missense mutations (W182L, C183Y, F255L) and one novel splice acceptor site mutation (IVS8,1 G > T). Two patients, homozygous for the IVS8,1 G > C mutation, presented with a severe clinical phenotype and died shortly after birth. Seven patients with a mild to moderate SLOS-phenotype disclosed compound heterozygosity of the IVS8,1 G > C mutation in combination with different novel and known missense mutations. [source]