Opaque Minerals (opaque + mineral)

Distribution by Scientific Domains


Selected Abstracts


Textural and compositional controls on modern beach and dune sands, New Zealand

EARTH SURFACE PROCESSES AND LANDFORMS, Issue 3 2007
J. J. Kasper-Zubillaga
Abstract Textural, compositional, physical and geophysical determinations were carried out on 111 beach and dune sand samples from two areas in New Zealand: the Kapiti,Foxton coast sourced by terranes of andesite and greywackes and the Farewell Spit,Wharariki coast sourced by a wide variety of Paleozoic terranes. Our aim is to understand how long-shore drift, beach width and source rock control the sedimentological and petrographic characteristics of beach and dune sands. Furthermore, this study shows the usefulness of specific minerals (quartz, plagioclase with magnetite inclusions, monomineralic opaque grains) to interpret the physical processes (fluvial discharges, long-shore currents, winds) that distribute beach and dune sands in narrow and wide coastal plains. This was done by means of direct (grain size and modal analyses) and indirect (specific gravity, magnetic/non-magnetic separations M/NM, magnetic susceptibility measurements, hysteresis loops) methods. Results are compared with beach sands from Hawaii, Oregon, the Spanish Mediterranean, Elba Island and Southern California. Compositionally, the Kapiti,Foxton sands are similar to first-order immature sands, which retain their fluvial signature. This results from the high discharge of rivers and the narrow beaches that control the composition of the Kapiti,Foxton sands. The abundance of feldspar with magnetite inclusions controls the specific gravity of the Kapiti,Foxton sands due to their low content of opaque minerals and coarse grain size. Magnetic susceptibility of the sands is related mainly to the abundance of feldspars with Fe oxides, volcanic lithics and free-opaque minerals. The Farewell Spit,Wharariki sands are slightly more mature than the Kapiti,Foxton sands. The composition of the Farewell Spit,Wharariki sands does not reflect accurately their provenance due to the prevalence of long-shore drift, waves, little river input and a wide beach. Low abundance of feldspar with magnetite inclusions and free opaque grains produces poor correlations between specific gravity (Sg) and Fe oxide bearing minerals. The small correlation between opaque grains and M/NM may be related to grain size. The magnetic susceptibility of Farewell Spit,Wharariki sands is low due to the low content of grains with magnetite inclusions. Hysteresis and isothermal remnant magnetization (IRM) agree with the magnetic susceptibility values. Copyright 2006 John Wiley & Sons, Ltd. [source]


Provenance of sandstones from the Wakino Subgroup of the Lower Cretaceous Kanmon Group, northern Kyushu, Japan

ISLAND ARC, Issue 1 2000
Daniel K. Asiedu
Abstract The Wakino Subgroup is a lower stratigraphic unit of the Lower Cretaceous Kanmon Group. Previous studies on provenance of Wakino sediments have mainly concentrated on either petrography of major framework grains or bulk rock geochemistry of shales. This study addresses the provenance of the Wakino sandstones by integrating the petrographic, bulk rock geochemistry, and mineral chemistry approaches. The proportions of framework grains of the Wakino sandstones suggest derivation from either a single geologically heterogeneous source terrane or multiple source areas. Major source lithologies are granitic rocks and high-grade metamorphic rocks but notable amounts of detritus were also derived from felsic, intermediate and mafic volcanic rocks, older sedimentary rocks, and ophiolitic rocks. The heavy mineral assemblage include, in order of decreasing abundance: opaque minerals (ilmenite and magnetite with minor rutile), zircon, garnet, chromian spinel, aluminum silicate mineral (probably andalusite), rutile, epidote, tourmaline and pyroxene. Zircon morphology suggests its derivation from granitic rocks. Chemistry of chromian spinel indicates that the chromian spinel grains were derived from the ultramafic cumulate member of an ophiolite suite. Garnet and ilmenite chemistry suggests their derivation from metamorphic rocks of the epidote-amphibolite to upper amphibolite facies though other source rocks cannot be discounted entirely. Major and trace element data for the Wakino sediments suggest their derivation from igneous and/or metamorphic rocks of felsic composition. The major element compositions suggest that the type of tectonic environment was of an active continental margin. The trace element data indicate that the sediments were derived from crustal rocks with a minor contribution from mantle-derived rocks. The trace element data further suggest that recycled sedimentary rocks are not major contributors of detritus. It appears that the granitic and metamorphic rocks of the Precambrian Ryongnam Massif in South Korea were the major contributors of detritus to the Wakino basin. A minor but significant amount of detritus was derived from the basement rocks of the Akiyoshi and Sangun Terrane. The chromian spinel appears to have been derived from a missing terrane though the ultramafic rocks in the Ogcheon Belt cannot be discounted. [source]


The Zak,odzie enstatite meteorite: Mineralogy, petrology, origin, and classification

METEORITICS & PLANETARY SCIENCE, Issue S9 2005
Tadeusz A. PRZYLIBSKI
Macroscopic and microscopic observations (in transmitted and reflected light), microprobe analyses, cathodoluminescence images, and X-ray diffraction data show that the meteorite is composed of clino- and orthoenstatite, two generations of feldspars, relict olivine (forsterite), a polymorph of SiO2 (apparently cristobalite), and opaque minerals: Fe-Ni alloy (kamacite and taenite), troilite, schreibersite, graphite, and sulfide (Mg, Mn, Fe)S, which is probably keilite. The texture is fine- to inequigranular of cumulate type, locally intergranular. The MgS-FeS thermometer indicates that the sulfides crystallized at ,580,600 :C. Thus, the Zaklodzie meteorite formed by the nearly complete melting of an enstatite chondrite protolith, probably at ,4.4 Ga; the process was likely caused by the decay of the 26Al nuclide in the planetesimal interior. The second stage of its evolution, which could have happened at ,2.1 Ga, involved partial re-melting of most fusible components, probably due to collision with another body. The structure, composition, and origin of the meteorite and its relation to the parent rock indicate that Zaklodzie may represent a primitive enstatite achondrite. [source]


Shock-melted material in the Krymka LL3.1 chondrite: Behavior of the opaque minerals

METEORITICS & PLANETARY SCIENCE, Issue 2 2005
Vira P. Semenenko
The shock pressure, nominally in the range of 75,90 GPa, could only have been 30,35 GPa in a porous material like fine-grained matrix. The melted regions have an igneous texture and their silicates are zoned and unequilibrated. Large metal-troilite intergrowths formed in these regions. The metal has a nickel content corresponding to martensite and the troilite contains up to 4.2 wt% nickel. Melting must have been very short and cooling very fast (>100 C/h at high temperature). The metal contains up to 0.7 wt% phosphorus. Abundant chromite crystals and sodium-iron phosphate glass globules are found in troilite. The differences in composition between the opaque phases found in the melted regions and those generally observed in unmetamorphosed chondrules are assigned to melting under closed system conditions. Surprisingly high Co concentrations (up to 13 wt%) were found in some metal grains in or at the periphery of melted regions. They likely resulted from sulfurization of metal by sulfur vapor produced during the shock. After solidification, at least one other shock led to mechanical effects in the melted regions. [source]