Home About us Contact | |||
Only Example (only + example)
Selected AbstractsThe Bravais polar lattice as a didactic tool for diffraction beginnersJOURNAL OF APPLIED CRYSTALLOGRAPHY, Issue 5-2 2010Massimo Nespolo When undergraduate students discover crystallography for the first time, they are usually already familiar with the phenomenon of diffraction as the `bending' of waves around small obstacles. The special (periodic) nature of crystals acting as `diffraction gratings' that produce interference of diffracted waves is typically rationalized in terms of the reciprocal lattice of the crystal. The concept of the reciprocal lattice, however, remains somewhat abstract for beginners, until they perform a diffraction experiment. It can be made more easily understandable through an intermediate step, namely its ancestor, the Bravais polar lattice. By means of a short historical trip through pre-X-ray crystallography, a generalized introduction to the notion of the dual lattice is given, of which the reciprocal lattice is the most common but by no means the only example, and it is shown how the use of the Bravais polar lattice can ease the introduction of the reciprocal lattice. [source] Cleavage of the iron-methionine bond in c-type cytochromes: Crystal structure of oxidized and reduced cytochrome c2 from Rhodopseudomonas palustris and its ammonia complexPROTEIN SCIENCE, Issue 1 2002Silvano Geremia Abstract The three-dimensional structures of the native cytochrome c2 from Rhodopseudomonas palustris and of its ammonia complex have been obtained at pH 4.4 and pH 8.5, respectively. The structure of the native form has been refined in the oxidized state at 1.70 Å and in the reduced state at 1.95 Å resolution. These are the first high-resolution crystal structures in both oxidation states of a cytochrome c2 with relatively high redox potential (+350 mV). The differences between the two oxidation states of the native form, including the position of internal water molecules, are small. The unusual six-residue insertion Gly82-Ala87, which precedes the heme binding Met93, forms an isolated 310 -helix secondary structural element not previously observed in other c-type cytochromes. Furthermore, this cytochrome shows an external methionine residue involved in a strained folding near the exposed edge of the heme. The structural comparison of the present cytochrome c2 with other c-type cytochromes has revealed that the presence of such a residue, with torsion angles , and , of approximately ,140 and ,130°, respectively, is a typical feature of this family of proteins. The refined crystal structure of the ammonia complex, obtained at 1.15 Å resolution, shows that the sulphur atom of the Met93 axial ligand does not coordinate the heme iron atom, but is replaced by an exogenous ammonia molecule. This is the only example so far reported of an X-ray structure with the heme iron coordinated by an ammonia molecule. The detachment of Met93 is accompanied by a very localized change in backbone conformation, involving mainly the residues Lys92, Met93, and Thr94. Previous studies under typical denaturing conditions, including high-pH values and the presence of exogenous ligands, have shown that the detachment of the Met axial ligand is a basic step in the folding/unfolding process of c-type cytochromes. The ammonia adduct represents a structural model for this important step of the unfolding pathway. Factors proposed to be important for the methionine dissociation are the strength of the H-bond between the Met93 and Tyr66 residues that stabilizes the native form, and the presence in this bacterial cytochrome c2 of the rare six-residue insertion in the helix 310 conformation that increases Met loop flexibility. [source] Structure of EstA esterase from psychrotrophic Pseudoalteromonas sp.ACTA CRYSTALLOGRAPHICA SECTION F (ELECTRONIC), Issue 9 2009643A covalently inhibited by monoethylphosphonate The crystal structure of the esterase EstA from the cold-adapted bacterium Pseudoalteromonas sp. 643A was determined in a covalently inhibited form at a resolution of 1.35,Å. The enzyme has a typical SGNH hydrolase structure consisting of a single domain containing a five-stranded ,-sheet, with three helices at the convex side and two helices at the concave side of the sheet, and is ornamented with a couple of very short helices at the domain edges. The active site is located in a groove and contains the classic catalytic triad of Ser, His and Asp. In the structure of the crystal soaked in diethyl p -nitrophenyl phosphate (DNP), the catalytic serine is covalently connected to a phosphonate moiety that clearly has only one ethyl group. This is the only example in the Protein Data Bank of a DNP-inhibited enzyme with covalently bound monoethylphosphate. [source] Compressed Octahedral Coordination in Chain Compounds Containing Divalent Copper: Structure and Magnetic Properties of CuFAsF6 and CsCuAlF6CHEMISTRY - A EUROPEAN JOURNAL, Issue 20 2004Zoran Mazej Dr. Abstract Crystal structures and magnetic investigations of CuFAsF6 and CsCuAlF6 are reported. Together with KCuAlF6, these appear to be the only examples of Jahn,Teller pure CuII compounds containing only one type of ligand that exhibits a compressed octahedral coordination geometry. The Rietveld method has been used for refining the CsCuAlF6 structure based on neutron powder diffraction data at 4 K. The compound crystallizes in space group Pnma (no. 62) with a=7.055(1), b=7.112(1), c=10.153(1) Å and Z=4 at 4 K. The structure is built from infinite [CuF5]n3n, chains of [CuF6]4, octahedra running along the [1,0,0] direction and (AlF6)3, octahedra connected by corners in the trans position, thus giving rise to chains oriented along the [0,1,0] direction. Single crystals of CuFAsF6 were prepared under solvothermal conditions in AsF5 above its critical temperature. The structure was determined from single-crystal data. CuFAsF6 crystallises in the orthorhombic space group Imma (No. 74) with a=10.732(5), b=6.941(3), c=6.814(3) Å and Z=4 at 200 K. The structure can also be described in terms of one-dimensional infinite [CuF5]n3n, chains of tilted [CuF6]4, octahedra linked by trans -vertices running along the b axis. The [CuF5]n3n, chains are connected through [AsF6], units sharing joint vertices. The compressed octahedral coordination of CuII atoms in CuFAsF6 and CsCuAlF6 compounds at room temperature is confirmed by Cu K-edge EXAFS (extended x-ray absorption fine structure) analysis. For both compounds strong antiferromagnetic interactions within the [CuF5]n3n, chains were observed (,p=,290±10 K and ,p=,390±10 K for CuFAsF6 and CsCuAlF6, respectively). The peculiar magnetic behaviour of chain compounds containing divalent copper at low temperature could be related to uncompensated magnetic moments in the one-dimensional network. [source] |