Home About us Contact | |||
Online Measurement (online + measurement)
Selected AbstractsOnline Measurement of Hydrocortisone Particles and Improvement of the Crystallization ProcessCHEMICAL ENGINEERING & TECHNOLOGY (CET), Issue 7 2009J.-X. Chen Abstract Many methods have been developed to measure crystal particle size. The online Focused Beam Reflectance Measurement (FBRM) and a classical offline Laser Diffraction Method (LDM) were used to measure the size of the polyvinylchloride (PVC) particles and hydrocortisone (HC) crystals. For the standard spherical PVC particles, the particle sizes measured using both FBRM and LDM are similar. However, for the anomalistic HC particles, the difference between the particle sizes measured by the above two methods increased with the increase in the degree of scrambling. The online monitoring of the particle size by direct installation of a FBRM probe into the crystallization process helped indicate the crystal quality, and thus, improve the control of crystallization processes. [source] Development of a Novel Membrane Aerated Hollow-Fiber MicrobioreactorBIOTECHNOLOGY PROGRESS, Issue 2 2008Louis Villain A new challenge in biotechnological processes is the development of flexible bioprocessing platforms, allowing strain selection, facilitating scale-up and integrating separation steps. Miniaturization of such a cultivation system allows parallel use and the saving of resources but makes the supply of oxygen to the cells difficult. In this work we present a membrane aerated hollow-fiber microbioreactor (HFMBR) which consists of an acrylic glass module equipped with two different types of membrane fibers. Fibers of polyethersulfone and polyvinyldifluoride were used for substrate and oxygen supply, respectively. Cultivation of E. coli as model organism and production of His-tagged GFP were carried out in the extracapillary space of the membrane aerated HFMBR and compared with cultivations in shaking flask which are commonly used for screening experiments. The measurement of the oxygen transfer capacity and the online monitoring of the dissolved oxygen during the cultivation were performed using a fiber optic oxygen sensor. Online measurement of the optical density was also integrated to the bioreactor. Due to efficient oxygen transfer, a better cell growth than in the shaking flask experiments was achieved, while no negative influence on the GFP productivity was observed in the membrane aerated bioreactor. Thus the feasibility of a future integrated downstreaming could also be demonstrated. [source] Online temperature measurement and simultaneous diameter estimation of fibers by thermography of the spinline in the melt spinning processADVANCES IN POLYMER TECHNOLOGY, Issue 3 2004M. Golzar Abstract Online measurements of the temperature and the diameter of fibers in the melt spinning process of thermoplastics are discussed. The temperature and the diameter of fibers can be applied in many fields such as fiber formation modelling, cooling rate behavior (Nusselt number), and rheological investigations (apparent extensional viscosity) of polymers. The online measurements along the spinline were carried out with an infrared camera during the melt spinning process. Two different experiments were designed and carried out to find the correction factor, i.e., the emissivity. The results show that the emissivity correction factor depends on the polymer type and the fiber diameter. Usually the diameter of the fibers is measured by an instrument or by direct velocity measurements invoking the continuity equation. In this new approach the diameter is found directly by the evaluation of the measured temperature. Therefore only one apparatus, namely an infrared camera taking snapshots, is required to find the fiber diameter. The key of this method can be seen in the temperature difference between the fiber and the environment. A mathematical procedure was developed to estimate the diameter of the fiber from the distribution curve. © 2004 Wiley Periodicals, Inc. Adv Polym Techn 23: 176,185, 2004; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/adv.20008 [source] A predictive high-throughput scale-down model of monoclonal antibody production in CHO cellsBIOTECHNOLOGY & BIOENGINEERING, Issue 6 2009Rachel Legmann Abstract Multi-factorial experimentation is essential in understanding the link between mammalian cell culture conditions and the glycoprotein product of any biomanufacturing process. This understanding is increasingly demanded as bioprocess development is influenced by the Quality by Design paradigm. We have developed a system that allows hundreds of micro-bioreactors to be run in parallel under controlled conditions, enabling factorial experiments of much larger scope than is possible with traditional systems. A high-throughput analytics workflow was also developed using commercially available instruments to obtain product quality information for each cell culture condition. The micro-bioreactor system was tested by executing a factorial experiment varying four process parameters: pH, dissolved oxygen, feed supplement rate, and reduced glutathione level. A total of 180 micro-bioreactors were run for 2 weeks during this DOE experiment to assess this scaled down micro-bioreactor system as a high-throughput tool for process development. Online measurements of pH, dissolved oxygen, and optical density were complemented by offline measurements of glucose, viability, titer, and product quality. Model accuracy was assessed by regressing the micro-bioreactor results with those obtained in conventional 3,L bioreactors. Excellent agreement was observed between the micro-bioreactor and the bench-top bioreactor. The micro-bioreactor results were further analyzed to link parameter manipulations to process outcomes via leverage plots, and to examine the interactions between process parameters. The results show that feed supplement rate has a significant effect (P,<,0.05) on all performance metrics with higher feed rates resulting in greater cell mass and product titer. Culture pH impacted terminal integrated viable cell concentration, titer and intact immunoglobulin G titer, with better results obtained at the lower pH set point. The results demonstrate that a micro-scale system can be an excellent model of larger scale systems, while providing data sets broader and deeper than are available by traditional methods. Biotechnol. Bioeng. 2009; 104: 1107,1120. © 2009 Wiley Periodicals, Inc. [source] Online pressure,volume,temperature measurements of polypropylene using a testing mold to simulate the injection-molding processJOURNAL OF APPLIED POLYMER SCIENCE, Issue 1 2010Jian Wang Abstract To obtain accurate prediction of service performance and service life of polymers and to optimize the processing parameters, a modified online measurement was used to measure the pressure,volume,temperature (PVT) properties of polymers under certain processing conditions. The measurement was based on an injection molding machine, and it was used to obtain the PVT data of polymers directly with a special testing mold under normal processing conditions. The PVT properties of a semicrystalline polymer, polypropylene, were measured through both an online testing mold and a conventional piston,die dilatometer. The PVT properties were correlated by a modified two-domain Tait equation of state. The differences between the two groups of PVT data measured were investigated, and relative differences, especially in the rubbery state because of different cooling or heating measuring modes and sample forms, were observed. Numerical simulations of injection-molding processes were carried out by Moldflow software with both of the types of PVT data. The resulting online PVT data exhibited improvement in the accurate prediction of shrinkage and warpage. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010 [source] Techniques for oxygen transfer measurement in bioreactors: a reviewJOURNAL OF CHEMICAL TECHNOLOGY & BIOTECHNOLOGY, Issue 8 2009S Suresh Abstract Oxygen is the most essential requirement for aerobic bioprocesses. The microbial growth in a bioreactor depends upon the oxygen transfer rate (OTR). The OTR is widely used to study the growth behavior of microbial and plant cell cultures. The mass transfer coefficient (kLa) determines the magnitude of the OTR. There are many techniques for measuring oxygen concentration and OTR in bioreactors. Zirconia, electrochemical, infrared, ultrasonic and laser cells are used to measure oxygen concentration in the liquid medium. Optical sensors are better alternatives to measure oxygen concentration in small bioreactors. Sulfite oxidation and gassing-out methods with a Clark-type electrode have been used for OTR measurements in bioreactors. Many new novel techniques have evolved recently for intermittent and continuous online measurement of OTR/kLa in various types of bioreactors. The present paper gives an overview of various measurement techniques and their limitations and/or suitability for measurement of OTR/kLa in various kinds of bioreactors, especially small bioreactors. Copyright © 2009 Society of Chemical Industry [source] Aerobic batch cultivation in micro bioreactor with integrated electrochemical sensor arrayBIOTECHNOLOGY PROGRESS, Issue 1 2010Michiel van Leeuwen Abstract Aerobic batch cultivations of Candida utilis were carried out in two micro bioreactors with a working volume of 100 ,L operated in parallel. The dimensions of the micro bioreactors were similar as the wells in a 96-well microtiter plate, to preserve compatibility with the current high-throughput cultivation systems. Each micro bioreactor was equipped with an electrochemical sensor array for the online measurement of temperature, pH, dissolved oxygen, and viable biomass concentration. Furthermore, the CO2 production rate was obtained from the online measurement of cumulative CO2 production during the cultivation. The online data obtained by the sensor array and the CO2 production measurements appeared to be very reproducible for all batch cultivations performed and were highly comparable to measurement results obtained during a similar aerobic batch cultivation carried out in a conventional 4L bench-scale bioreactor. Although the sensor chip certainly needs further improvement on some points, this work clearly shows the applicability of electrochemical sensor arrays for the monitoring of parallel micro-scale fermentations, e.g. using the 96-well microtiterplate format. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2010 [source] Development of a system for the on-line measurement of carbon dioxide production in microbioreactors: Application to aerobic batch cultivations of Candida utilisBIOTECHNOLOGY PROGRESS, Issue 3 2009Michiel van Leeuwen Abstract We developed and applied a conductometric method for the quantitative online measurement of the carbon dioxide (CO2) production during batch cultivations of Candida utilis on a 100-,L scale. The applied method for the CO2 measurement consisted of absorption of the produced CO2 from the exhaust gas of the microbioreactor in an alkali solution, of which the conductivity was measured on-line. The measured conductivity change of the alkali solution showed a linear relation with the total amount of CO2 absorbed. After calibration of the CO2 measurement system, it was connected to a well of a 96-well microtiter plate. The mixing in the well was achieved by a magnetic stirrer. Using online measurement of the CO2 production during the cultivation, we show reproducible exponential batch growth of C. utilis on a 100-,L scale. The CO2 production measurements obtained from the microcultivation were compared with the CO2 production measurement in a 4-L bioreactor equipped with a conventional off-gas analyzer. The measurements showed that on-line measurement of the CO2 production rate in microbioreactors can provide essential data for quantitative physiological studies and provide better understanding of microscale cultivations. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009 [source] Odor processing in multiple chemical sensitivityHUMAN BRAIN MAPPING, Issue 3 2007Lena Hillert Abstract Multiple chemical sensitivity (MCS) is characterized by somatic distress upon exposure to odors. As in other idiopathic environmental intolerances, the mechanisms behind the reported hypersensitivity are unknown. Using the advantage of the well-defined trigger (odor), we investigated whether subjects with MCS could have an increased odor-signal response in the odor-processing neuronal circuits. Positron emission tomography (PET) activation studies with several different odorants were carried out in 12 MCS females and 12 female controls. Activation was defined as a significant increase in regional cerebral blood flow (rCBF) during smelling of the respective odorant compared to smelling of odorless air. The study also included online measurements of respiratory frequency and amplitude and heart rate variations by recording of R wave intervals (RR) on the surface electrocardiogram. The MCS subjects activated odor-processing brain regions less than controls, despite the reported, and physiologically indicated (decreased RR interval) distress. In parallel, they showed an odorant-related increase in activation of the anterior cingulate cortex and cuneus-precuneus. Notably, the baseline rCBF was normal. Thus, the abnormal patterns were observed only in response to odor signals. Subjects with MCS process odors differently from controls, however, without signs of neuronal sensitization. One possible explanation for the observed pattern of activation in MCS is a top-down regulation of odor-response via cingulate cortex. Hum. Brain Mapp, 2007. © 2006 Wiley-Liss, Inc. [source] |