Home About us Contact | |||
One-stage Clotting (one-stage + clotting)
Selected AbstractsThrombin generation in haemophilia A patients with mutations causing factor VIII assay discrepancyHAEMOPHILIA, Issue 4 2010R. GILMORE Summary., Up to 40% of patients with mild haemophilia A have a discrepancy whereby factor VIII (FVIII) measurements by a two-stage chromogenic assay (FVIII:CCH) are disproportionately reduced compared with the FVIII one-stage clotting value (FVIII:C). Which assay best reflects the coagulation potential and clinical phenotype in this patient group is of clinical significance, yet remains unclear. We have assessed the global coagulant ability of haemophilia patients with FVIII assay discrepancy using calibrated automated thrombography (CAT). A total of 18 patients with mutations Arg531His/Cys or Arg698Trp causing FVIII discrepancy were investigated, together with 12 haemophilia patients with concordant FVIII values and 15 normal controls. Factor VIII levels in all patients and controls were measured using both one-stage clotting assay and two-stage chromogenic assay. Thrombin generation was assessed in platelet-poor plasma by CAT using a low tissue factor concentration (1 pm). FVIII:CCH values were below normal in all patients, and in the discrepant group were between 1.5- and 8-fold lower than FVIII:C values. CAT parameters were affected in all haemophilia patients. The endogenous thrombin potential (ETP) was reduced to 58,67% of the mean normal value (1301 nm min,1), whereas peak thrombin was further reduced to 27,30% of the mean normal value (178 nm) in both discrepant and concordant patient groups. Analysis of the discrepant patient group showed the most significant correlation between the one-stage FVIII:C assay and ETP (r2 = 0.44) and peak thrombin parameters (r2 = 0.27). [source] Pharmacokinetics of factor VIII and factor IXHAEMOPHILIA, Issue 2003M. Morfini Summary., A survey of principal pharmacokinetic (PK) studies on factor VIII (FVIII) and factor IX (FIX) plasma- and rDNA-derived concentrates, analysed by means of the PKRD program, has been performed. Notwithstanding the accurate definition of the study design, released in 1991 by the Scientific and Standardization Committee of the International Society on Thrombosis and Haemostasis (SSC-ISTH), a large variability of PK parameters has been pointed out. In the majority of the PK studies, the size of the population is small. In this situation, a careful individualization of haemophilia therapy is strongly recommended. The tailored prediction of loading and maintenance dosages and the need for strict control of trough FVIII/IX levels are mandatory not only to decrease the risk of bleeds but also to spare financial resources. Recently, the old problem of FVIII assay standardization has again become a concern among physicians, especially after the introduction of B-domain deleted rFVIII concentrate. The discrepancies between the widely used one-stage clotting assay and the chromogenic substrate assay seem to be solved by the introduction of a product-specific laboratory standard. [source] Experimental metastasis and primary tumor growth in mice with hemophilia AJOURNAL OF THROMBOSIS AND HAEMOSTASIS, Issue 5 2006F. LANGER Summary., During experimental lung metastasis, tumor cells adhere to the pulmonary microvasculature and activate coagulation via surface-expressed tissue factor (TF), leading to local fibrin deposition and platelet aggregation. While interventional studies have demonstrated great efficacy of anticoagulants and antiplatelet agents in inhibiting metastasis, no information is available on how tumor biology may be affected by congenital bleeding disorders such as hemophilia A. We therefore used a syngeneic model to study experimental metastasis and primary tumor growth in factor VIII (FVIII)-deficient mice. By conventional reverse transcription-polymerase chain reaction, flow cytometry, and one-stage clotting assays, we demonstrated constitutive expression of TF mRNA, antigen, and procoagulant activity in the murine B16F10 melanoma cell line. In hemophilic mice, B16F10 lung metastasis was significantly (P < 0.001) enhanced by a single dose of human FVIII (100 U kg,1), suggesting that FVIII played a critical role during the early blood-borne phase of the metastatic cascade. In contrast, lung seeding was significantly (P < 0.05) reduced by lepirudin, a direct thrombin inhibitor, suggesting that thrombin generation contributed to pulmonary metastasis even in the absence of FVIII. Consistent with this finding, intravenous injection of B16F10 cell-evoked laboratory changes of a hemolytic thrombotic microangiopathy and consumptive coagulopathy in both hemophilic and non-hemophilic mice. Subcutaneous implantation of B16F10 cells into mice with hemophilia A gave rise to primary tumors in an exponential growth pattern similar to that observed in non-hemophilic mice. Although TF expression by B16F10 cells may promote thrombin-dependent metastasis in mice with hemophilia A, amplification of coagulation by host FVIII appears to be necessary for maximum lung seeding. [source] A multicenter pharmacokinetic study of the B-domain deleted recombinant factor VIII concentrate using different assays and standardsJOURNAL OF THROMBOSIS AND HAEMOSTASIS, Issue 11 2003M. Morfini Summary., When the one-stage clotting assay is used in comparison with the chromogenic and immunological assays, plasma levels of factor (F)VIII are underestimated by 40,50% after infusion of B-domain deleted recombinant FVIII (BDD-rFVIII) in patients with hemophilia. A possible way to counteract the underestimation of FVIII levels by the one-stage assay is the adoption of a recombinant FVIII reference standard instead of a plasma standard. To evaluate the usefulness of such a standard [ReFacto® Laboratory Standard (RLS)], the pharmacokinetic parameters of a single dose of BDD-rFVIII (25 U kg,1) were evaluated in a multicenter study carried out in 18 patients with severe hemophilia A. The very low in vivo recovery, obtained with the combination of the one-stage assay and plasma reference standard, was increased up to the values obtained by the chromogenic assay when the results were expressed in terms of RLS. When the plasma standard was used, the one-stage/chromogenic ratio was 0.82 ± 0.12 for FVIII levels above 25 U dL,1 and 1.42 ± 0.99 for FVIII levels below 25 U dL,1. Using the RLS, the one-stage/chromogenic ratio increased to 1.01 ± 0.19 at FVIII levels above 25 U dL,1, as a consequence of a complete overlap of the two decays; however, at FVIII levels below 25 U dL,1, the one-stage/chromogenic ratio was still 1.6 ± 0.85. After the twelfth hour, FVIII concentrations obtained by chromogenic assay were always lower than those resulting from the one-stage clotting assay, independently of the standard used. Results obtained by chromogenic assay were not affected by the type of standard used. Compared with those obtained by the one-stage assay, higher values of clearance, lower volume of distribution area and shorter plasma half-life or mean residence time were obtained by chromogenic assay because of a shape change of the decay curve due to a shift to higher values in the first part (time interval 0,12 h) and to lower values in the second part of the decay curve (time interval 12,48 h). As a consequence, the slope of the decay curve obtained by means of chromogenic assay was steeper. In conclusion, the more homogeneous results of in vivo recovery and pharmacokinetic analysis, due to the decrease of discrepancy between the two methods when RLS was used, make the cheaper and more widely used one-stage assay preferable to the more expensive chromogenic assay, on condition that the ReFacto specific standard has used. [source] |